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Lemma 0.1. Take R a domain and L a finite field extension of Q(R). TFAE
(1) x is integral in L
(2) the minimal polynomial over Q(R) of x has coefficients in R
(3) x is integral in R(P ) for all maximal ideals P .

Proof. (1) ⇐⇒ (2): The reverse direction is obvious. For the forward, we can
consider the Galois closure of L. This is still finite over Q(R). Then the minimal
polynomial of x over Q(R) is

∏
(t − σ(x)) for σ the Galois conjugates of x. Since

σ(x) are integral over R and the coefficients are combinations of the σ(x) and in
Q, the coefficients are in R.

(2) ⇐⇒ (3): one direction is easy. The other follows from the proof of the
localness of being integrally closed. □

Proposition 0.2. The integral closure of dedekind domains in a finite separable
closure is a Dedekind domain.

Proof. Take R ⊆ Q, L a finite separated extension of Q. Let R′ be the integral
closure of R in L. Suppose [L : Q] = n. Furthermore, R′ is finitely generated and
if R is a PID, then R′ is free over R of rank n.

Our goal is to find R′ ⊆ M ⊆ L. First we realize that L admits a basis over Q
b1, . . . , bn. For each bi, it is the root of a polynomial over Q. Thus there is si such
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2 VINCENT TRAN

that b′i := sibi ∈ R′. So we have that

Rb′1 + · · ·+Rb′n ⊆ R′.

Now we use that L is a separable extension. Recall that because L is separable,
the blinear form L × L → Q via trace is non-degenerate. Thus for b′1, . . . , b

′
n, we

can choose the dual basis cj such that

tr(bi, cj) = δij .

Claim:
R′ ⊆ Rc1 ⊕Rc2 ⊕ · · ·Rcn.

Let x ∈ R′. Then x = a1c1 + · · ·+ ancn for ai ∈ Q. But, ai = tr(bix). Since bix is
integral, tr(bix) is integral. Hence ai ∈ R′. Hence R′ is finitely generated and thus
Noetherian.

If R is a PID, then R′ ⊆ Rn so that R′ is free as well of rank n.
So we have that R′ is Noetherian, a domain, and integrally closed. So finally,

take P a non-zero prime ideal of R′.
Note that P ∩ R is a prime ideal of R. We shall show that it is non-zero. Take

0 ̸= x ∈ P with minimal polynomial tn+ · · ·+a0. Then by passing to the separable
closure, we conclude that 0 ̸= a0 ∈ R. Then a0 = x· a polynomial so that a0

x ∈ R′.
Since a0 = a0

x · x and x ∈ P , so a0 ∈ P and hence P ∩R is non-zero.
Now let F = R

R∩P . This is a field. This injects into R′

P and R′

P is finite dimension
over F because R′ is finitely generated over R. Thus R′

P is also a field so that P is
maximal. Thus R′ is a Dedekind domain.

Proof of R′/P being a field: Consider the linear operator y· : D → D with D
finite dimensional over F and y ∈ D. This is injective because D is a domain. By
linear algebra, y· is also surjective. Hence every element in D is invertible. □

Corollary 0.3. A basis for R′ over R is also a basis for L over Q.

We are especially interested in R = Z,Fq[t],C[t].

Example 0.4. Consider R = C[x] + C[x]
√
x3 − 1. This is a Dedekind domain.

Consider the submodule I of the free R-module R. If it was true that all submodules
of a free module over a Dedekind domain was free, then I would be a rank 1 R
module. Thus R is principal.

We have the prime ideal (x− 1,
√
x3 − 1) ⊆ R. But this isn’t principal.

Nevertheless, a local ring is a PID iff it is a Dedekind domain.

Example 0.5. Consider localizing the previous example. When we localize at
(x− 1,

√
x3 − 1), we see that

√
x3 − 1 generates it: x−1√

x3−1
.

1. Basis

We want to compute bases of integral closures. Let R be a PID, L/Q a finite
degree n separable extension. Specify R to Z. Then

OL = Zb1 ⊕ · · ·Zbn.

We shall use the trace quadratic form again.
Let bi be a basis for L over Q. Then let DL/Q(b1, . . . , bn) = det(tr(bibj)). This

is in Q and non-zero because the trace is non-degenerate (and this matrix detects
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degeneracy). A quick intuition check: if bi are in OL, then this determinant is in
R.

Proposition 1.1. Let A ∈ GLn(Q). Then if we consider the basis Abi = ci, then

DL/Q(c1, . . . , cn) = DL/Q(b1, . . . , bn)(detA)2.

Proof. det(tr(cicj)) = detA det(tr(bibj)) detA
T □

Example 1.2. Take Q(
√
d) with d square-free. Then the basis is 1,

√
d so that

DL/Q = det

[
2 0
0 2d

]
= 4d.

With basis 1, 1+
√
d

2 , we have that

DL/Q = det

[
2 1
1 1+d

2

]
= d.

2. 1.15

Take R a Dedekind domain, Q the quotient field, L a finite separable extension,
and S the integral closure of R in L. Then take α1, . . . , αn ∈ L a basis for L over Q.
If αi ∈ S: DL/Q(αi) ∈ R. If R is a PID, then ∃αi such that S = Rα1 ⊕ · · · ⊕Rαn.

Now let αi be a basis for S and βi be a basis for L. Then notice that βi =∑
rijαj , rij ∈ R. Let M = (rij) ∈ Mn×n(R). Since αi, βi are bases of L, detM ∈ R

and is non-zero. Then

DL/Q(βi) = (detM)2DL/Q(αi).

If the βi is a basis of S, then detM is a unit. Thus

DL := DL/Q(αi) ∈ (R \ {0})/((R×)2).

When R is Z, DL ∈ Z.

Example 2.1. When R is Fp[x], then (Fp[x]
×)2 is F×

p when p ̸= 2. Then the
discriminant is determined up to a scalar and sign, so we can force it to be monic.

Example 2.2. Take Q(
√
D) with D square free. Then

DQ(
√
D) =

{
4D D ̸= 1 (mod 4)

D D = 1 (mod 4)
.

Note that |detM | = [S : ⟨βi⟩].
In general, if L = Q(θ), then S ⊇ Z[θ].

Definition 2.3. The index of θ is [S : Z[θ]].

Proposition 2.4. Thus

(ind(θ))2DL/K(θ) = DL/K(1, θ, . . . , θn−1).

Proof. To see the index fact, notice that

Zn M−→ Zn

is injective and [Zn : im(M)] = |detM | by selecting a nice basis for both spaces
that makes M to be diagonal. □
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Theorem 2.5. DL = 1, 0 (mod 4) for R = Z.
In general, DL is a square mod 4.

Proof.

Definition 2.6. Let αi be a basis of S. Let

P = P (α1, . . . , αn) =


α
(1)
1 · · · α

(n)
n

...
...

...
α
(n)
1 · · · α

(n)
n

 .

Then P ∈ Mn×n(Q).

Proposition 2.7. (tr(αiαj)) = PTP

Proof. The RHS has in (i, j) the sum of the Galois conjugates of αiαj . This is the
trace of αiαj . □

The above then implies that D is a square. But we haven’t shown yet that
detP ∈ Z. In fact, in general it isn’t. So instead we must consider it in a field
extension.

We know that

detP =
∑
σ∈Sn

(−1)sign(σ)
n∏

i=1

α
σ(i)
i .

Thus

detP =
∑
σ∈An

n∏
i=1

α
σ(i)
i −

∑
σ/∈An

n∏
i=1

α
σ(i)
i .

By looking at the Galois action on A−B, we conclude that A,B are Galois conju-
gates. Thus A + B,AB ∈ R. But DL = (A − B)2 = (A + B)2 − 4AB, which is a
square mod 4R. □

Corollary 2.8. Suppose D ̸= 1 (mod 4). We know that

(ind(
√
D))2DQ(

√
D) = DQ(

√
D)/Q(1,

√
D) = 4D.

Thus we have two cases: ind(
√
D) = 1, 2. Since D ̸= 1 (mod 4), DL = 0 (mod 4)

by the Theorem (if ind(
√
D) = 2, then DL ≡ D ̸= 1 (mod 4)). This thus forces

ind(
√
D) = 1, as otherwise D wouldn’t be square-free. Hence S = Z[

√
D].

Recall that an Eisenstein polynomial with respect to prime p is such that p ∤ an,
p|an−1, . . . , a0, and p2 ∤ a0.

Lemma 2.9. If θ ∈ OL is such that L = Q(θ), and the minimal polynomial of
θ is Eisensteinian for p. Then p ∤ ind θ. Let the minimal polynomial be Xn +
an−1X

n−1 + · · ·+ a0.

Proof. Notice that θn/p ∈ OL since it equals −an−1θ
n−1−···−a0

p . Now suppose that
p | indθ. Then OL/Z[θ] is a finite group H such that p | |H|. We know then that
∃α ∈ H \ {0} such that pα = 0. Furthermore, α ∈ OL such that pα ∈ Z[θ]. Then
let

pα = b0 + b1θ + · · ·+ bn−1θ
n−1, bi ∈ Z.
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Suppose that p | b0, b1, . . . , bj−1 and not bj . Now let

β = α− b0 + b1θ + · · ·+ bj−1θ
j−1

p
=

bjθ
j + · · · bn−1θ

n−1

p
∈ OL.

Then β · θn−j−1 ∈ OL. This equals

bjθ
n−1 + · · ·+ bnθ

2n−j−1

p
=

bjθ
n−1

p
+ . . .

where the dots is in OL. Thus bjθ
n−1/p ∈ OL. But the norm of this is bnj ·

N(θn−1)/pn. We have established that pn ∤ a0 = N(θn−1). Thus this isn’t in Z,
giving us a contradiction. □

3. 1.17

Example 3.1. We shall show that an integral basis of OQ(
√
2) is 1,

√
2. We know

that the discriminant of D(1,
√
2) = 8. Thus

(ind
√
2)2DQ(

√
2) = 8.

Either the index is 1 or 2. But the above result implies that 2 ∤ ind
√
2 so that the

index is 1.

Proposition 3.2. Let θ be a root of f(X) = Xn + an−1X + · · ·+ a0. Then

D(1, θ, . . . , θn−1) = .

In an earlier result, we showed that

D(1, θ, . . . , θn−1) = (detP )2.

Since Pij = (αi)(j) = (α(j))i By rearranging, P is a Vandermonde matrix. Thus

detP =
∏
i<j

(α(j) − α(i)).

Thus

(detP )2 =

∏
i<j

(α(j) − α(i))

2

= (−1)n(n−1)/2
∏
i ̸=j

(α(i) − α(j).

This also equals

(−1)n(n−1)/2
n∏

i=1

n∏
j=1,j ̸=i

(α(i) − α(j)).

Let the second product be βi. Notice that the βi are conjugates. So for a choice of
β,

(−1)n(n−1)/2
n∏
1

β(i) = (−1)n(n−1)/2NQ(β)/Q(β).

Then notice that
β = f ′(α)

so that
D(1, α, . . . , αn−1) = (−1)n(n−1)/2N(f ′(α)).

Example 3.3. Let p be an odd prime and consider Q(ζp). The minimal polynomial
of ζp is ϕ(x) = xp−1 + · · ·+ 1.
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Question 3.1. Q[ζ] ⊆ OQ(ζ)?

Question 3.2. What is DQ(ζ)?

First we compute
D(1, ζ, . . . , ζp−1).

By the above proposition, we can see that this equals (−1)n(n−1)/2N(f ′(ζ)). By
the product rule,

(x− 1)ϕ = xp − 1 =⇒ (x− 1)ϕ′ + ϕ = pxp−1 =⇒ (ζ − 1)ϕ′(ζ) = pζp−1 =
p

ζ
.

Thus
ϕ′(ζ) =

p

ζ(ζ − 1)
.

Hence

Dζ = (−1)(p−1)(p−2)/2 N(p)

N(ζ)N(ζ − 1)
= (−1)(

p−1
2 ) pp−1

(−1)p−1N(ζ − 1)
.

We can see that N(ζ− 1) = (−1)p−1· the constant term of ϕ(X+1) since ϕ(X+1)
is monic and ζ − 1 has p − 1 conjugates. This constant term is p. Since p is odd,
we end up with

Dζ = (−1)(
p−1
2 ) p

p−1

p
= (−1)(

p−1
2 )pp−2 = (−1)

p−1
2 pp−2.

This tells us that DL is an odd power of p up to sign. This also solves the p = 3
case.

Finally, to compute the index of ζ, we can see that Z[ζ] = Z[1−ζ]. But because
the minimal polynomial of 1 − ζ is Eisenstein. Since ind ζ = ind 1 − ζ, an above
proposition implies that ind ζ = 1. Thus

DL = (−1)
p−1
2 pp−2.

Question 3.3. What does the sign of the discriminant measure?

Example 3.4. We now ask about when Z[α] ↪−→ OL has finite index.
We instead look to OL = Fp[x]. Then a finite index subring is the kernel of the

map f 7→ f(1)− f(0). The kernel coincidentally works out to be a ring.
By analogy, we instead look to finite dimensional index subrings of C[x]. The

same map gives us a subring. So we are interested in functions that are the same
on 0 and 1. This is the same as gluing 0, 1 together.

4. 1.22

Proposition 4.1. The sign of the discriminant of OL is (−1)r2 .

Proof. By a formula, the sign of DL is the same as the sign of detPTP . Then
complex conjugation of P changes the determinant by (−1)r2 . Thus detPTP =
(−1)r2 detP ∗P = (−1)r2 detPdetP . Since detPdetP is positive, we are done. □

Definition 4.2. A fractional ideal I ⊆ Q(R) is an R module if ∃a ∈ R such that
aI ⊆ R.

Example 4.3. R, I ⊴ R, 0 ̸= a ∈ Q, aR ⊆ Q(R). Another example is 1
2Z ⊆ Q.
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Definition 4.4. If I, J are fractional ideals, then

IJ := ⟨ab|a ∈ I, b ∈ J⟩

(R-module). If I, J are fraction, then IJ is also a fractional ideal.

Note that RI = I since I = 1 · I ⊆ RI ⊆ I since I is an R module.

Definition 4.5. A fractional ideal is invertible if ∃ fractional ideal J such that
IJ = R.

Example 4.6. The inverse of aR is 1
aR. Not all non-zero ideals of R are invertible.

But in Dedekind domains, all fractional ideals are invertible.

Theorem 4.7. Let R be a Dedekind domain and I a non-zero fractional ideal.
Then I is a unique product of (can be negative) powers of prime ideals.

Example 4.8. ⟨x, y⟩ ⊆ C[x, y] is not an invertible ideal.

Lemma 4.9. Given non-zero ideal I ⊆ R, ∃P1, . . . , Pk prime non-zero ideals such
that

P1 · · ·Pk ⊆ I ⊆ P1 ∩ · · ·Pk.

Proof. Assume that there doesn’t exist I such that this property isn’t satisfied.
Then there is a maximal I in this set by Noetherian property. Then I can’t be
prime because otherwise P1 = I. Thus ∃a, b ∈ R such that ab ∈ I and a, b /∈ I.

Now consider I ⊊ I + aR, I + bR. Then the product of these two ideals is
contained in I and also is in the intersection Since I was the maximal counter
example, I + aR, I + bR satisfies the property. Hence we are done. □

Lemma 4.10. If P ⊴ R is prime, then P is invertible.

Proof. We want IP = R for a fractional ideal I. If I exists, then I ⊆ {x ∈ Q|∀a ∈
P, xa ∈ R}. Let I be the set on the RHS. This is a fractional ideal. Then we shall
show that IP = R.

Clearly R ⊆ I. Hence P ⊆ IP . Furthermore, by definition, IP ⊆ R. It is thus
enough to show that P ̸= IP (since all non-zero primes are maximal).

So suppose P = IP . Then ∀x ∈ I, xP ⊆ P . Since P is finitely generated,
xP ⊆ P . Hence x ∈ R as it is then integral. Therefore P = IP ⇐⇒ I = R. Thus
all we need to show is that I ̸= R.

Take 0 ̸= a ∈ P . Then there exists

P1 · · ·Pk ⊆ aR ⊆ P1 ∩ · · ·Pk.

Suppose that none of the Pi are in P . Then the product of the elements not in Pi

is not in P , but aR ⊆ P . Since non-zero primes are maximal, P = Pi.
Pick k to be minimal. Then P2 · · ·Pk ̸⊆ aR. Thus ∃b ∈ P2 · · ·Pk such that

b
a /∈ R. Finally, we want to show that b

a ∈ I. Then b
aP ⊆ 1

aP1P2 · · ·Pk ⊆ R
(b ∈ P2 · · ·Pk). □

Corollary 4.11. This proves the above counter-example is a counter-example:
f
g x ∈ C[x, y], f

g y ∈ C[x, y]. But then g has at most x in denom, g has at most
y. Contradiction. Thus I = R for this prime ideal.
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Theorem. First we show for non-fractional ideals of R.
By the lemma, we have P1 · · ·Pk ⊆ I. If k = 0, then R ⊆ I. If k = 1, then

because all prime ideals are maximal, I = P1.
Suppose we have shown this for k − 1. Then

P1 · · ·Pk ⊆ I ⊆ P1

because I is contained in some maximal ideal m. This maximal ideal has to be one
of the Pi. If m isn’t one of the Pi, then there is a product of all these elements not
in Pi that is in I, contradicting the primeness of m. Hence P2 · · ·Pk ⊆ P−1

1 I ⊆ R
so that by induction hypothesis, we are done.

Now if I is a fractional ideal, then aI ⊆ R so that aI = a1 · · · aℓ and aR =
P1 · · ·Pk. Hence a−1R = P−1

1 · · ·P−1
k and a−1RaI = P−1

1 · · ·P−1
k a1 · · · aℓ.

Finally, this decomposition is unique: If P e1
1 · · ·P ak

k = af11 · · · afℓℓ . We can assume
the ei, fi are positive by cross multiplying. The RHS equals a1(a

f1−1
1 · · · afℓℓ ) ⊆ a1.

By the same argument above, this implies that one of the pi = a1. Thus we can
cancel it.

By induction, we have that R is some product of prime ideals. But then R is
contained in one of those prime ideals, a contradiction. □

A slightly different formulation of the theorem is

Definition 4.12. Div(R) := the abelian group of fractional ideals under the oper-
ation of ·. Every prime ideal is an element of Div(R). We have a map Z → Div(R)
for every prime ideal n 7→ pn. Thus we have⊕

p∈max(R)

Z → Div(R).

The theorem is equivalent to this map being an isomorphism.
We also have Q× → Div(R) via a 7→ aR. The kernel of this map is the set of a

such that aR = R, so a is a unit. So we have

0 → R× → Q× → Div(R) → cl(R) → 0.

The elements in the image of Q× are principal. Thus cl(R) = 0 ⇐⇒ R is a PID.

Example 4.13. R = Z gives us

0 → {±1} → Q× ↠
⊕

p prime

Z → cl(Z) = 0 → .

Theorem 4.14 (Minkowski). For all rings of integers R, cl(R) is finite.

Theorem 4.15 (Dirichlet). O×
L

∼= Zr1+r2−1 ⊕ Tor(O×
L ). The latter term are the

units of unity, which is also a finite group.

Question 4.1. When is P f1
1 · · ·P fk

k ⊆ qe11 · · · qeℓℓ ?
Move everything to the LHS so that

q−e1
1 · · · q−eℓ

ℓ P f1
1 · · ·P fk

k ⊆ R.

But then ei > 0. I.e. the fractional ideals form a poset.
Furthermore, the isomorphism is an anti-isomorphism of posets.
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We state the setup again: let R be Dedekind domain, Q its fraction field, L a
finite separable extension, S = OL. Then for all primes P of S, q = P ∩ R is a
prime of R, qS = (P ∩R)S ⊴ S. Now suppose we have q′ ⊴ R such that q′S ⊆ P .
Then q′S ∩R ⊆ P ∩R.

We can show that q′S ∩ R = q′. Clearly q′ ⊇ q′S ∩ R. Now suppose we have
r ∈ q′S that is in R, if r /∈ q′, then rR + q′ = R since q′ is maximal. But then
ar + b = 1, a ∈ R, b ∈ q′. Since ar ∈ q′S and b ∈ q′S, a contradiction.

Thus we can go up and down via q 7→ q ∩ R of max(S) → max(R). Then
p ∈ f−1(q) ⇐⇒ qS ⊆ p. By the theorem, qS = pa1

1 · · · pak

k with ai > 0. By
the argument about posets, the fiber of q ∈ max(R) is exactly the pi. With this
method, we can find all maximal ideals of S.

Example 4.16. Take Q(i). Then S = Z[i] and R = Z. Now we ask how pZ[i]
decomposes.

Suppose p = 3 (mod 4). Then p is inert, i.e. pZ[i] is still prime. This is because
Z[i]/pZ[i] = Fp[x]/(x

2 + 1), which is a prime when p = 3 (mod 4).
Now suppose p = 1 (mod 4). In this case, Fp[x]/(x

2 + 1) is not a field. To fully
factor it, we must also quotient out by (x− a) or (x+ a) where a2 ≡ −1 (mod 4).
Thus the factorization is (p, i+ a)(p, i− a).

Finally, if p = 2, then we want to know about F2[x]/(x
2 + 1) ∼= F2[y]/y

2 via
x 7→ y + 1. This is a local ring. Then (2) = (2, i− 1)2.

5. 1.27

Let R = Z. Then the maximal ideals q in OL such that pOL ⊆ q. We have a
map Z/pZ → OL/qOL. Since OL is a free Z-module, (Z is a PID), OL/pOL is an
algebra over Z/pZ. This only needs R to be a PID.

So to find maximal ideals of S lying over p, take a maximal ideal of q of S/qS.
Then S/q ∼= (S/pS)/q. So we have a map R/pR → S/qS, a field of dimension at
most n. Thus S/qS is a field extension of R/pR.

Definition 5.1. Let fp = dimR/pR S/qS.

Example 5.2. In Z[i], when p ≡ 3 (mod 4), fp = 2, if p ≡ 1 (mod 4), fq = 1, and
if p = 2, fq = 1.

Definition 5.3. So if we have p ∈ max(R), pS = p1 · · · pn with no repeats, we say
that p is unramified in S or L.

So odd primes are unramified in Z[i].

Proposition 5.4. The following are equivalent:
(1) Note that p is unramified iff qS = ∩pi =

∏
pi where this indices over pi

such that qS ⊆ pi.
(2) In other words, we can test unramification via pi ⊴ S/pS =⇒ ∩pi = 0.
(3) Thus S/pS is reduced since the intersection is the nilradical.

We have a map S/pS →
∏

S/pi. This map is always surjective by Chinese
Remainder Theorem. If p is unramified, this is injective, so it is an isomorphism.
Thus

Proposition 5.5. ∑
pR⊆qS

fq ≤ n.
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With equality iff p is unramified.

Definition 5.6. In the quadratic case, there are two possibilities: a prime stays
prime, i.e. inert. If it splits into two primes, each fq = 1, i.e. totally split. This
definition makes sense for non-quadratic cases.

Definition 5.7. Take p ∈ max(R) and pS = pe11 · · · pekk . It ramifies if at least one
of the ei’s is > 1.

Theorem 5.8. ∑
eqfq = n.

Proof. Note that pS = pe11 · · · pekk . We still have that

pS = ∩peii .

Then by Chinese Remainder Theorem,

S/pS ∼=
∏

S/peii S.

It suffices to show that dimR/pR S/peii = eifi where fi = fpi . We have a filtration

0 ⊆ pe−1/pe ⊆ pe−2/pe ⊆ · · · ⊆ p/pe ⊆ S/pe.

We can then compute the dimension of S/pe as
e−1∑
i=0

dim pi/pi+1.

Observe that pi/pi+1 is a module over S/p and dimS/p = fp. So all we need to
show is that pi/pi+1 is one dimensional over S/p.

Nothing changes if we replace S by Sp, the localization since S/p is already a
field. We have an obvious map

pi/pi+1 → piSp/p
i+1Sp.

For surjectivity, take x ∈ pi, y /∈ p. Since y /∈ p, ∃z ∈ S such that yz = 1+a, a ∈ p

since p is maximal. Now consider xz − x
y . This equals x(yz−1)

y = xa
y ∈ pi+1Sp.

For injectivity, take x ∈ P i ∩ pi+1Sp. Then x = a
b , b /∈ p, a ∈ pi+1. We can use

unique prime ideal factorization to conclude that pi+1 | (x). Thus x ∈ pi+1.
So WLOG, S is a local Dedekind domain. But now S is a DVR.

Corollary 5.9. Being a Dedekind domain is a local condition. Thus being a
Dedekind domain is equivalent to being locally a DVR.

We can show that S is a PID.
We have a map S× → Div(S). If S is a field, we are done trivially. So S has one

maximal ideal, making Div(S) ∼= Z. We thus want to show that S× ↠ Z. I.e., we
just need to show that the maximal ideal is principal.

Let p ⊴ S. Then p2 ⊊ p. Take t ∈ p/p2. This generates p. Then tS has a unique
factorization into ideals, namely pk, k ≥ 0. Since tS ⊆ p and isn’t in p2. Hence
tS = p.

Since S is a PID, p = (t) so that pi/pi+1 = (ti)/(ti+1) so that pi/pi+1 has one
generator, ti. □
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6. 1.29

Proposition 6.1. For a multiplicatively closed subset T , SpecT−1R ↪−→ SpecR.
Furthermore, SpecT−1R = {P ∈ SpecR|P ∩ T = ∅}.

Proof. Easy □

Question 6.1. What is ICL(T
−1R) for T−1 = R \ p.

Clearly ICL(R) ⊆ ICL(T
−1R). In addition, we also know that T−1(ICL(R)) ⊆

ICL(T
−1R). By rescaling the minimal polynomial of elements in ICL(T

−1R),
T−1(ICL(R)) = ICL(T

−1R).
Thus T−1S = ICL(Rq). The prime ideals of T−1S are contained in the prime

ideals of S. Elements of SpecT−1S are those such that P doesn’t meet T , i.e.
R ∩ P ⊆ q. Since R is a Dedekind domain, R ∩ P = q.

Thus the splitting of primes is a local problem.

Question 6.2. Are the inertial degrees preserved under localization?

Clearly the ramification degrees stay the same. In general, the dimension of S/P
is the same dimension as T−1S/T−1P as the filtration from an earlier proof of the
sum formula stays the same.

Theorem 6.2. Assume that ∃x ∈ S such that R[x] = S. Also assume that f =
Tn + an−1T

n−1 + · · · + a0 is a minimal polynomial for x. We know that ai ∈ R
since x ∈ S. The n = [L : Q] because R[x] = S =⇒ Q[x] = L.

Now take q ∈ max(R) and let f be the image of f mod q. Since R/q is a field,
let f =

∏
geii for gi ∈ R/q[T ]. Choose representatives of gi, g̃i ∈ R[T ]. Let pi ⊆ S

be such that pi = qS + g̃i(x)S. Then

(1) pi ∈ max(S)
(2) qS =

∏
peii

(3) fpi
= deg gi

Quick sanity check: ∑
deg gi · ei = n.

But this is because f =
∏

geii (mod P ).

Proof. (1,3) We check S/pi = (S/q)/(g̃i(x)). Then S/q = ((R[T ]/f(T ))/q)/g̃i(T ).
We can reorder to get ((R[T ]/q)/g̃i(x))/f . This equals ((R/q)[T ]/gi)/f ∼= (R/q)[T ]/gi.
Since gi is irreducible, we are done.

(2) Now we compute
∏

peii . We can see that

(qS + g1S)(qS + g2S) = q2S + qg1S + qg2S + g1g2S.

We can first see that
∏

peii ⊆ qS. The only issue when doing the expansion on the
RHS could be with

∏
gie

eiS. We just want to show that
∏

g̃eii ∈ qS. So we look
at it mod q: 0 = f =

∏
g̃eii ∈ S/q.

By unique prime factorization, q =
∏

p
e′i
i with e′i ≤ ei. But then

∏
i g̃

e′i
i ∈ q. It

follows that
∏

g
e′i
i (x) = 0 in S/q = R/q[T ]

f(T ) . Thus f |
∏

g
e′i
i , a contradiction. Hence

e′i = ei. □
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Example 6.3. Let D be square free and D ̸= 1 (mod 4). Then OQ(
√
D) = Z ⊕

Z[
√
D]. The minimal polynomial is x2 −D. Thus we seek factorizations of x2 −D

(mod p).
If p ∤ D and D is a QR mod p, then (p) splits completely into (p, a−

√
D)(p, a+√

D) with a2 = D (mod p).
If p|D, then (p) ramifies. Otherwise (p) is inert.
Suppose p = 2. Then because D is odd (even case covered earlier), (2) =

(2,
√
D − 1)2.

7. 1.31

Example 7.1. What if D ≡ 1 (mod 4)? Then OQ(
√
D) = Z

[
1+

√
D

2

]
. The minimal

polynomial is now x2 − x+ 1−D
4 .

We wish to understand how this splits mod p. If p = 2, then if D ≡ 5 (mod 8),
(2) is inert. Otherwise, (2) = (2,

√
D)(2,

√
D + 1).

p is odd: Same as before—depends on whether D is a QR mod p.

Now assume
(1) R is a PID
(2) ∀q ∈ maxR, R/q is perfect, i.e. every finite extension is separable.

So an example is Z. Another is Fp[t] and C[t].
Recall that if R is a PID and L/Q is a finite separable extension, we defined

discL/Q = det((trαiαj)) ∈ R \ {α}/(R×)2

where αi are a basis. Now take q ⊴ R maximal.

Theorem 7.2. q ramifies iff q | DL/Q.

Proof. We can localize and still keep all the properties we wanted of R in Example 7.
Thus the discriminant is still defined, and the basis is still the same as ICL(Rq) =
T−1ICL(R). Since we can factor

(DL/R)q = qiq(p1)q · · · (pk)q,

the discriminant still has the property that q|DL/Q. We do this because the dis-
criminants in L/R lives in a different set than L/Rq, so we need to identity them.
So WLOG suppose R is local.

Claim 7.1. If b1, . . . , bn is a basis for S over R, iff b1, . . . , bn is a basis of S/q over
R/q.

Proof. If bi ∈ S is a basis, then they span S over R, so bi span S/q over R/q. As
S/q is n-dimensional over R/q, n spanning vectors are a basis.

For the opposite direction, αi is a basis for S over R iff ∃B ∈ MN (R) such that
B(αi) = bi and B is invertible. Since αi is a basis for S/q, bi is a basis implies that
B ∈ Mn(R/q) is invertible. Thus we have reduced to B ∈ M(R) is invertible iff
B ∈ Mn(R/q) is invertible. Localness is the only thing needed.

We know that B is invertible iff detB is a unit. This thus reduces the problem
to n = 1. But detB is a unit mod q as detB /∈ q (here we use localness).

Thus we can lift bi to a basis of S/q. □
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So we have a basis αi of S over R that is a basis mod q. We want to know
det((trαiαj)) (mod q). This is the same as det((trαiαj (mod q))). But the trace
of S α−→ S is the same as the trace of S/q α−→ S/q. Thus we can compute the traces
of αiαj (mod q).

For αiαj , i ̸= j, they affect different coordinates mod q of
∏

S/peii , so mod q,
it is just zero. Thus we are computing the determinant of a block matrix where
each block is the trace matrix of S/peii . Since the determinant is zero mod q, one of
these blocks has determinant zero mod q. So we reduce to the action on one term
of
∏

S/peii .
If ei = 1, S/pi is a finite field extension of R/q. The determinant is non-zero

because S/pi over R/q is non-degenerate by assumption of separableness.
If ei > 1, then because R is local, R is a PID, so we can choose t that generates

pi. Inside S/peii , we have pi/p
ei
i . Since dimS/peii = epi

fpi
, dim pi/p

ei
i = fpi

(ei−1).
So inside the trace matrix of S/peii has a block matrix that is fi(ei−1) by fi(ei−1).
Inside this block, the traces of xixj basis elements of pi/peii are in pi/p

ei
i . All these

elements are nilpotent. Thus the traces are zero, so the trace matrix of S/peii has
three zero blocks, so the determinant is zero.

Hence q|D iff ei > 1 for some i. □

Corollary 7.3. Since DL/Q ̸= 0, DL/Rq
is divisible by only finitely many primes.

Therefore ramification happens at only finitely many primes.

Example 7.4. The only prime that ramifies in Q(ζp) is p since D = (−1)
p−1
2 pp−1.

8. 2.3

Theorem 8.1 (Dirichlet Unit Theorem). O×
L

∼= Zr1+r2−1 ⊕ µ(O×
L ) where µ(O×

L )
is finite group.

Proof. Let σ1, . . . , σr1 , τ1, . . . , τr2 . We can embed O×
L → Rr1+r2 via

F : a 7→ (log |σ1(a)|, . . . , 2 log |τ1(a)|, . . . , 2 log |τr2(a)|).
Obviously the roots of unity are in the kernel.

Lemma 8.2. Let C1, . . . , Cr1+r2 > 0. Then ∃ finite many a ∈ OL such that
|σi(a)| ≤ Ci and |τi(a)| ≤ Ci+r2 .

Proof. We know that OL
∼= Zα1 ⊕ · · · ⊕ Z/αn for some αi. Let P be the matrix

of embeddings as before. Then (detP )2 = DL. Take a = a1α1 + · · ·+ anαn. Then(
σ1(a)

...
σn(a)

)
= P

(
a1

...
an

)
.

Thus

P−1

(
α1(a)

...
αn(a)

)
=

(
a1

...
an

)
.

Now take C ′ larger than any entry in P , C larger than all the |σi(a)|, |τi(a)|. Then
the entries of this

P−1

(
α1(a)

...
αn(a)

)
are between (−nC ′C, nC ′C) so that there are 2nC ′C +1 choices for each ai. Thus
there number of possibilities for a is bounded by (2nC ′C + 1)n. □
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Remark 8.3. The intuition for this is that when r2 = 0, the αi forms a basis for
Rn. Then OL is a lattice in Rn. This lemma shows that the number of lattice
points in a bounded shape has finitely many points.

Now take a such that |σi(a)| = 1 and |τi(a)| = 1. Then ak are also in the kernel.
There can be only finitely many powers in this kernel by the above lemma. Thus a
is a root of unity.

So we have this exact sequence

µ(L) → O×
L → Rr1+r2 .

The roots of unity in L are also in OL since the minimal polynomial has coefficients
in Z.

Claim 8.1. a ∈ O×
L =⇒

∑
log |σi(a)|+ 2

∑
log |τi(a)| = 0

Proof. Pass to the Galois closure. If x ∈ OL, then x | NL/Q(x) as N(x)/x is a
product of the other conjugates.

Then x ∈ O×
L iff N(x) = ±1. This is because if x is a unit, N(x) ∈ Z× = ±1. If

N(x) = 1, then x|1 so that x is a unit.
Thus a ∈ O×

L =⇒ |N(a)| = 1. Furthermore, |N(a)| =
∏

|σi(a)| ·
∏

|τi(a)|2.
Take the log of both sides to get this result. □

Hence the image of this map lives in a hyperplane V , which has dimension
r1+ r2−1. So now we want to show that the image of O×

L in Rr1+r2 is free of rank
r1 + r2 − 1. We want to show that the image is a lattice in V .

Lemma 8.4. If Γ ⊆ Rd is a subgroup that generates Rd as a vector space, then
the following are equivalent:

(1) ∀δ ⊆ Rd bounded, |Γ ∩ δ| < ∞
(2) ∃ a basis for Rd b1, . . . , bd such that Γ = Zb1 ⊕ · · ·Zbd.

Proof. (2) =⇒ (1) is a past lemma.
(1) =⇒ (2): By assumption, ∃c1, . . . , cd ∈ Γ a basis for Rd. Now consider

Γ0 = Zc1 ⊕ · · ·Zcd ⊆ Rd. This is contained in Γ as well.
Then Γ/Γ0 is finite. If a ∈ Γ, then a =

∑
aici, ai ∈ R. Then ai = ⌊ai⌋+ δi. So

a ≡ b+ Γ0 when b = δ1c1 + · · ·+ δdcd. This is a bounded set, so there are a finite
number of these.

Now let M = [Γ : Γ0]. Then MΓ ⊆ Γ0 ⊆ Γ. Then Γ0 ⊆ Γ ⊆ 1
M Γ0. Thus Γ is a

subgroup of a free group of rank d, so Γ is free of rank ≤ d. But Γ0 is a subgroup
of Γ of rank d, so Γ is free of rank d.

Finally, the generators of Γ span Rd since Γ spans Rd. □

So consider any arbitrary lattice Zb1 ⊕ · · ·Zbd ⊆ Rd. Then we can take {bi},
and the parallelipid formed with them is the fundamental parallelogram T . Then
Rd =

⊔
z∈L(z + Tb1,...,bd). In addition, vol(Tb1,bd) = |det(bi)|.

The difference between two choices of bases of the lattice is an invertible matrix
over Z. Hence the volume of the fundamental parallelogram is invariant, VL.

Theorem 8.5 (Minkowski’s Theorem). Let S ⊆ Rd be a bounded, symmetric
(S = −S), convex set. Let L be a lattice. Then if vol(S) > 2dvol(L), |S ∩ (L \O)|.
This is the optimal bound for vol(S).
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Proof. Take 1
2S. Its volume is 1

2d
vol(S) > vol(L). Claim: ∃x, y ∈ 1

2S distinct s.t.
x − y ∈ L. This is sufficient since this implies that 2x, 2y ∈ S, −2y ∈ S, so by
convexity, 1

2 (2x)−
1
2 (2y) = x− y ∈ L. This is non-zero since x ̸= y. Call 1

2S T .
So what we are really trying to show is that if vol(T ) > vol(L), ∃x ̸= y ∈ T such

that x − y ∈ L. Pick a fundamental parallelogram P . Then dissect T into each
part’s intersection with othe fundamental parallelograms. I.e. S = ⊔z∈L(S ∩ (P +
z)). Translate these pieces into P . By the volume hypothesis, there must be two
overlapping points. These two points differ by a lattice point by construction. □

Proposition 8.6. Let S be a symmetric, convex, and have the property that S =
∩∞
i=1Si, Si+1 ⊆ Si, vol(Si) > 2dvol(L). Then S has a non-trivial lattice point.

Corollary 8.7. If S is closed, then consider S′
i := Si +B(0, 1

i ). Then S = ∩Si so
we get a point.

Proof. S1 satisfies the conditions for the regular Minkowski’s theorem, so it has a
finite number of lattice points, {vi}. The same is true for S2, but the lattice points
in S2 is contained in {vi}. Assume FTSOC that for each vi , ∃Si such that vi /∈ Si.
But since {vi} is finite, ∃Si such that vj /∈ Si∀j. Contradiction. □

We want to show that there are finitely many α ∈ O×
L such that |

∏
log |σ(α)|

∏
log |τ(α)|| <

C. We have a map OL → Rr1 ⊕Cr2 ∼= Rn given by the embeddings. The image of
this is a lattice since OL has an integral basis. Thus the intersection with any box
has a finite number of elements in OL, which implies a finite number of elements
of O×

L by moving between logs and exponents.
So finally, all we need to prove is that imF spans Rr1+r2−1. This is because of

Lemma 8.4.
We can find v1, . . . , vd ∈ V (the hyperplane) such that they generate V and as a

matrix, the sum of rows is 0, the diagonal is positive, the upper triangle is positive,
and the lower triangle is negative.

Proof. We are trying to show that they generate V .
Suppose FTSOC ∃t1, . . . , td ∈ R such that

∑
i ti(vj)i = 0∀j. This represents a

vector T that could span ⟨vi⟩⊥. We can suppose that not all of the ti are equal,
as otherwise this would be the relation we already know for the plane. WLOG,
t1 ≥ t2, . . . , td. Thus (v1)1 = −

∑
i>1 ti(v1)i.

So
∑

ti(vj)i = t1(−
∑

(v1)) +
∑

i>1 ti(vj)i > t1(−
∑

vi) + t1(v1)1 = 0. □

Then for 1 ≤ i ≤ r1 + r2, ∃α ∈ O×
L such that |σi(α)| > 1, |σj(α)| < 1. We

have the embedding OL ↪−→ Rr1 ⊕ Cr2 . This is a lattice, which has some volume
V . Take the cube bounded by 1, 1, . . . , V with V in the i-th coordinate. Then by
Minkowski’s theorem, we find an element in OL.

The last thing we need to show is that the image of O×
L → V spans V . We just

need to find one guy in each coordinate is positive (diagonal is positive). This is
the same as finding α ∈ O×

L such that |σi(α)| > 1, |σj(α)| < 1. We can embed
OL → Rr1 ×Cr2 , and we want to understand this as a lattice in Rr1 × (R2)r2 via



16 VINCENT TRAN

a+ bi 7→ (a, b). Take αi an integral basis for OL. The matrix is
σ1(α1) · · ·

...
ℜτ1(α1)

...

 .

But we can easily move from P to this related matrix via 1
2

[
1 1
−i i

]
. The determi-

nant of this is 1
2 . So the volume of OL in Rr1(R2)r2 is

|detP |
2r2

=

√
|DL|
2r2

.

Our goal now is to find non-zero α ∈ OL such that |σi(α)| < Ri and |τi(α)| < Ci.
The volume is such a region is 2r1

∏
Riπ

r2
∏

C2
i . We need this to be larger than√

|DL|
2r2 · 2n in order for us to use Minkowski’s. Thus∏

Ri

∏
C2

j >
√

|DL|
(
2

π

)r2

.

We can strengthen this to a ≥ by letting one of the Ri or Ci bounds be a ≤. This
is because of the strengthened Minkowski’s.

Take M = 2
√
DL. We want to find an α so that one of the coordinates is bigger

than one. The following argument will only be for the real coordinates, but a similar
one works for complex. Take R1 = M , R2 = . . . , Rr1 = 1. Then we have non-zero
α1 ∈ OL such that |σ1(α1)| ≤ M and |σi(α1)| ≤ 1. Now we find an α2 that shrinks
the non-one coordinates while preserving |N(αi)| ≤ M , αi ̸= 0, and ∀i ∈ [2, n],
|σj(αi+1)| ≤ |σj(αi)|.

Since |N(αi)| ≤ M , there is a value C that repeats infinitely often. Then
OL/COL. This has size Cn. Thus αi ≡ αj (mod C) happens infinitely often. Now
consider αi+1

αi
. This equals αi

αi
+ αi+1−αi

αi
= 1 + Cx

αi
for x ∈ OL. Since C = N(αi),

1 + Cx
αi

∈ OL. Hence αi+1

αi
∈ O×

L (norm is one and is in OL.
Furthermore, since |σj(αi+1)| < |σj(αi)|, |σj(

αi+1

αi
)| < 1. Hence we have shown

it generates V . □

Example 8.8. What happens when r1 + r2 − 1 = 0?
If r1 = 1, r2 = 0, then L = Q. So Dirichlet’s unit theorem tells us that the unit

group is a finite group, namely the roots of unity. This is ±1.
Otherwise, r1 = 0, r2 = 1, then n = 2 so that L is a quadratic extension, namely

an imaginary quadratic extension (otherwise no complex embeddings). The only
roots of unity in L has to have cyclotomic polynomial with degree ≤ 2. Thus
L = Q(

√
d) so that the degree is either 3, 4 (the 6 case is the same as 3). So there

are other roots of unity only if d = −1 or −3.

Example 8.9. What if r1 + r2 − 1 = 1.
Either we have a quadratic extension with 2 real embeddings, cubic with 1 real

and 1 pair of complex, and quartic with 2 pairs of complex embeddings.
Now take r1 = 2. Then L = Q(

√
d), Take positive d ̸≡ 1 (mod 4) so that

OL = Z[
√
d]. Since this is contained in R, there are only two roots of unity. But

there is an infinite part, namely a rank 1 part with a generator.
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In addition, being a unit means we have found a2 − db2 = ±1, so we have
found solutions to Pell’s equations and there there exists a fundamental one. The
fundamental unit is not canonical, but the other solutions just change signs. So we
can take a, b > 0. We can also embed Z[

√
d] into R via taking the positive root,

so a+ b
√
d > 1.

Lemma 8.10. If α = a + b
√
d, a, b ∈ N , then αn = an + bn

√
d. Then an+1 > an

and bn+1 > bn.

Proof. Straightforward induction. □

Thus if we find a solution, there are only finitely many possibilities to search for
when looking for the fundamental one.

Example 8.11. d = 2: a2 − 2b2 = ±1.
We have (1, 1). Its inverse if

√
2 − 1. This is the fundamental unit. So all

the solutions here are obtained from (1 +
√
2)n. Namely an = (1+

√
2)n+(1−

√
2)n

2 ,

bn = (1+
√
2)n−(1−

√
2)n

2
√
2

.

We want to understand the cokernel of L× → Div(L), i.e. the ideal class group.
Then for all ideals I ⊆ OL, OL/I is finite, namely

∏
OL/P

ee
i . This has cardinal-

ity
∏

|OL/Pi|ei . Then the map of ideals to Z≥0 via I 7→ |OL/I| = [OL : I] is
multiplicative. Thus we can extend this to a map Div(L) → Q×

>0.

Definition 8.12. This the norm of an ideal.

It satisfies
L×

DivL Q×

We shall consider ideals as a lattice again and use Minkowski again.

9. 2.10

Suppose we have I ∈ Div(L). We have the norm map N : Div(L) → Q×
>0.

Whenever we compare norms via inequalities, there is an absolute value. It has
these properties:

(1) N((α)) = NL/Q(α)
(2) If I ⊆ OL, then N(I) = [OL : I].
(3) We have a map L → Rn via

α 7→ (σ1(α), . . . , σr1(α),ℜ(τ1(α),ℑ(τ1(α), . . .).

(4) If I ⊆ L is a fractional ideal, i(I) is a lattice with volume N(I)
√

|DL|
2r2 .

Proof. If i : I ⊆ OL, then this follows from N(I) = [OL : I].
In general, if I is a fractional ideal, ∃α ∈ OL \ {0} such that αI ⊴ OL.

This is by some proposition/lemma from a while ago. Then αI ⊆ I as

sublattices, and αI ⊆ OL. Thus vol(αI) = N(αI)·
√

|DL|
2r1 =

N(α)N(I)·
√

|DL|
2r1 .
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But [I : αI] = [OL : αOL] = N(α) since the index only depends on α as a
matrix, not the basis which it acts on. Thus the LHS is N(α)vol(I) so that

vol(αI) = N(α)vol(I) =
N(α)N(I) ·

√
|DL|

2r1

and

vol(I) =
N(I) ·

√
|DL|

2r1
.

□

Our goal is to show that if I is a fixed ideal, ∃α ∈ I such that N(α) ≤ N(I) · C
with C a constant. If C = 1, then (α) ⊆ I and both have the same norms, so
I = (α). We would like to produce a point in the lattice i(I) inside the region of
points such that the product of the coordinates equals N(I). But this region isn’t
convex. Instead we consider a subregion.

We know that

|N(α)| 1
n = (|σ1(α)||σ2(α)| . . . |σr1(α)|(ℜ(τ1(α))2 + ℑ(τ1(α))2) · · · )

1
n

≤
|σ1(α)|+ · · ·+ 2

√
ℜ(τ1(α))2 + ℑ(τ1(α))2 + · · ·

n

by AM-GM. We want to bound the RHS by N(I)
1
n · C 1

n

For B ∈ R be

Wr1,r2(B) ⊆ Rn := {a1, . . . , ar1 , x1, . . . , xr2 , y1, . . . , yr2 ||α1|+· · ·+|αr1 |+2
√

x2
1 + y21+· · · ≤ B}.

We want to find C such that vol(Wr1,r2(n(N(I))
1
nC

1
n ) ≥ 2n

N(I)
√

|DL|
2r2 . The volume

of W scales by raising to the n power, so we need C to be

vol(Wr1,r2(1)) · nnN(I) · C ≥ 2n
N(I)

√
|DL|

2r2
.

Thus let C =
2n·

√
|DL|

2r2vol(Wr1,r2
(1))nn .

If r2 = 0, then we get a diamond shape. The volume of this is 2r1

n! . For each
complex dimension (r2), we get π

4 factor in the volume. Thus C =
√

|DL|· n!
nn ·
(
4
π

)r2
Thus for α ∈ I,

N(α) ≤ N(I) ·
√
|DL|

n!

nn

(
4

π

)r2

≤ N(I) ·
√
|DL|

n!

nn

(
4

π

)n
2

.

For n = 2, the second term (f(n) :=
(
4
π

)n
2 ) is 2

π . We can see that

f(n+ 1)

f ′(n)
=

(
n

n+ 1

)n

· 2√
π
.

This is always less than 1 since
(

n
n+1

)n
≤ 1

2 <
√
π
2 . Thus |N(α)| ≤ N(I)

√
|DL| · 2

π .

By picking I = OL, we get that 1 ≤ |N(α)| ≤
√
|DL| 2π so that π2

4 ≤ |DL|. Thus
3 ≤ |DL|. As a consequence, any non-trivial extension has non ±1 discriminant, so
there is always a prime that ramifies.
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Now consider Div(L) ↠ cl(L). Take [I] ∈ cl(L). Then ∃0 ̸= α ∈ I−1 such that
N(α) ≤ N(I−1) ·

√
|DL| · n!

nn

(
4
π

)r2 . We have by definition, αI ⊆ OL. Thus

N(αI) = N(α)N(I) ≤ N(I)N(I−1)
√

|DK | n!
nn

(
4

π

)r2

.

As [αI] = [I], we realize that ∀a ∈ cl(L), ∃J ⊴ OL such that
(1) [J ] = a

(2) N(J) ≤
√
|DL| n!nn

(
4
π

)r2
Thus | cl(L)| is finite.

10. 2.12 Function Fields

Today we will cover Dirichlet’s unit theorem for function fields. To do so, we
need an analog of r1, r2.

Definition 10.1. Let O±
L be the integral closure of k[t, t−1]. Let O+

L be the integral
closure of k[t]. Let O−

L be the integral closure of k[t−1]. Let µL be the roots of
unity in L. These are automatically in OL for all of them.

We want to compare valuations. We are going to look at t−1O−
L . This factors

as
∏r

i=1 Q
ei
i (and these aren’t detectable from pirmes in k[t]). These are “primes

lying over ∞”.
Consider the Riemann sphere. Then the natural functions as an algebraic ge-

ometer on P 1(C) are C(t). The functions defined everywhere except at infinity,
i.e. no pole near 0 (neighborhood being A2), are C[t]. The regular functions on
P 1(C) \ {0} are C[t−1] and the regular functions on P 1(C) \ {0,∞} are C[t, t−1].
Thus the primes lying over ∞ are ones that lie in an affine chart near ∞.

Theorem 10.2 (Dirichlet’s Theorem for function fields).

O+
L/µL

∼= Zr−1

where r is the number of primes lying over ∞ for k a finite field. The statement
for non-finite fields is

O×
L /(algebraic points over k) ∼= Zr−1.

Proof. We want to make a map ϕ : O×
L → Zr and find that it lives in a hyperplane.

Take f ∈ O×
L and let fO−

L =
∏

Qai
i . Let ϕ(f) = (a1, . . . , ar). The norm of f is in

(k[t])×, i.e. N(f) ∈ k. Thus the degree of N(f) = 0.
We can then see that fO−

L =
∏

β
e′i
i with each βi lying over pi primes in k[t−1].

Since f ∈ O×
L , no primes in k[t] can show up as one of the pi. This is because

N(f) =
∏

p
e′ifi
i has degree equalling

∑
e′i · deg(pi) · fi. It turns out that the pi

are the only guys in the fractional factorization of f , so each βi = Qi. Thus
degN(f) = 0 =

∑
eiai · (−1)fi, since the degree of pi is −1 (pi is 1

t ). Thus imϕ
lives in a hyperplane.

We now wish to compute kerϕ.

Lemma 10.3. If k = Fq is finite, any algebraic element over k is a root of unity.

Proof. Take g an algebraic element over k. Then k[g] is a finite field, so g|k[g]|−1 =
1. □

Claim 10.1. kerϕ is the set of roots of unity.
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Proof. Take f ∈ kerϕ. We can see that 0 = ordβi
(f) for βi lying over a prime in

k[t]. In addition, 0 = ordQi
(f) for Qi lying over (t−1). Thus f ∈ O−

L . Furthermore,
f ∈ O+

L ∩ O−
L . Thus f is integral over k[t] and k[t−1].

So the minimal polynomial of f is
∑

ciT
i with each ci ∈ k[t], ci ∈ k[t]−1]. Thus

ci ∈ k. Hence f is algebraic over k and is thus a root of unity. □

Finally, the last step is to find r − 1 linear independent vectors in imϕ, as this
will show that O×

L /µL
∼= ϕ(O×

L )
∼= Zr−1. Our proof will use algebraic geometry.

The image of ϕ being full rank is equivalent to the cokernel of ϕ inside H is
finite. Let H be the hyperplane. We know that H = {(a1, . . . , ar)|

∑
eiaifi = 0}.

Furthermore, such tuples come from a factorization of f ∈ O×
L .

Given a function field L/k(t), we can define a group Div(L) as
∑

p app where
p ∈ SpecO+

L or O−
L with ap ∈ Z. We have a subgroup Div0(L) of divisors such

that degD = 0 where degD =
∑

ap deg p. We also define Div0−(L) ⊆ Div0(L) to
divisors supported on primes over ∞ and P (L) to be principal divisors.

Theorem 10.4 (Riemann-Roch). The last part of the theorem is equivalent to
Div0−(L)/P−(L) being finite. This theorem says this as a corollary.

The cokernel of ϕ is exactly Div0−(L) and imϕ is exactly P−(L).
The meaning of Riemann-Roch is that given a divisor D, the set

L(D) = {g ∈ L× : (g) +D ≥ 0 everywhere}

and by everywhere we mean that
∑

cp ≥ 0 where the cp are the coefficients of
(g) +D. I.e. there are no poles anywhere. E.g. D = 5(0) − 2∞ means at most 5
poles at 0 and it needs two roots at ∞.

If we let ℓ(D) = dimk L(D), then the theorem states that

ℓ(D) ≥ deg(D) + 1− g

where g is some constant depending only on L.

Lemma 10.5. The number of divisors D ≥ 0 such that degD = n is finite for
K/k(t) and k a finite field.

Proof. The primes in k[t] or k[t−1] are either monic irreducibles or (t−1). For each
prime in k[t] or k[t−1], only finitely many lie over it. We know that B/p for p
a prime in k[t] or k[t−1], degB = deg p· non-zero integer. Thus deg

∑
cβ · β =∑

cβ deg deg p· non-zero integer. We know that cβ ≥ 0. In order for the degree
to be ≤ n, there are a finite number of possibilities for cβ . There are only finitely
many monic irreducibles with degree ≤ n. □

Now we can see that Div0−(L)/P−(L) ⊆ Div0(L) ⊆ P (L). Fix any divisor D of
degree 1, for a divisor A of deg 0, deg gD + A = g =⇒ ℓ(gD + A) ≥ 1. Thus
B := gD + Ã + (h) ≥ 0 for h ∈ L× so that A ≡ B − gD. Then B is an effective
divisor (coefficients being ≥ 0) of bounded degree. A reference is Rozin. □

11. 2.14 Some Computations

Example 11.1. Consider Q(
√
−7). Then dL = −7, r1 = 0, r2 = 1, n = 2. Thus

| cl(L)| ≤
√
7 · 2

4 · 4
π . This upper bound is less than 2, so | cl(L)| = 1 so we learn

that Z
[
1+

√
−7

2

]
is a PID.
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Example 11.2. Consider L = Q(
√
−15). Then N(J) ≤ 2. Since the ideal norm is

multiplicative, it suffices to consider prime ideals with norm 2. But the only such
are the ones lying over 2.

So we wish to know how 2 factors in Z
[
1+

√
−15
2

]
. The minimal polynomial of

1+
√
−15
2 is x2−x+4. Mod 2, this splits, so 2 splits. Therefore there are two primes

lying over 2, and because N(2) = 4, N(pi) = 2. Thus these are the only ideals with
norm 2.

Now we wish to find out whether pi is principal. Suppose pi = (α). Then
|N(α)| = N(pi) = 2. Since α = a+b 1+

√
−15
2 , N(α) = a2+ab+4b2 =

(
a+ b

2

)2
+ 15

4 b2.
We want to know if this can equal 2. If b = 1, then we already get a contradiction.
Thus b = 0, and we get that a2 = 2, a contradiction. Thus pi is not principal.

So we know that there is a non-trivial element in cl(L). We also know that p2 is
non-trivial. Thus cl(L) = Z

2Z or Z/3Z.
We can see that p21 ̸= (2) since 2 doesn’t ramify (it doesn’t divide dL). Finally, we

know that
(

1+
√
−15
2

)
= p21, p22, or p1p2. The latter is 2, so it can’t equal

(
1+

√
−15
2

)
.

Thus
(

1+
√
−15
2

)
= p21. Since we have an order 2 element, cl(L) = Z/2Z.

We also know that O×
Q(

√
−15)

= ±1 by Dirichlet’s unit theorem. So we have

0 → Z/2Z → Q(
√
−15)× → Div(L) → Z/2Z → 0.

Recall that Wr1,r2(B) = vol((a1, . . . , ar1 , x1, y1, . . . , xr2 , yr2) ∈ Rn|
∑

|ai|+2
∑√

x2
i + y2i ).

We know that Wr1,r2(B) = BnWr1,r2(1). We can divide up Wr1,r2(1) into quad-
rants to reduce to computing 2r1Vr1,r2(B) where V has all positive coordinates. We
know that

Vr1,r2(1) =

∫ 1

0

Vr1−1,r2(1−u1)du1 =

∫ 1

0

(1−u1)
n−1)du1Vr1−1,r2(1) =

1

n
Vr1−1,r2(1).

So we have
Vr1,r2(1) =

1

n(n− 1) · · · (n− (r1 − 1))
V0,r2(1).

By using polar coordinates (l1, . . . , lr2 , θ1, . . . , θr2), we get that∫
B

1 =

∫
0≤θ≤2π,

∑
li=1

1
1

4r2
l1 · · · lr2 =

(2π)r2

4r2

∫
∑

li≤1

∏
li.

We split this integral vis a via Fubini’s theorem to get
∏

1
2ri(2−1) . Everything comes

together to get the n!.
There can be better convex shapes inside the region that gives us better bounds.

12. 2.17 Kummer’s Theorem

We shall show specific cases of Fermat’s Last Theorem.
It is enough to prove it for n = p an odd prime and n = 4. This is because

xn + yn = zn

(xm)p + (ym)p = (zm)p

where n = pm. Otherwise, n = 2k so that

(x2k−2

)4 + (y2
k−2

)4 = (z2
k−2

)4.

We shall prove Fermat’s Last Theorem for regular primes.
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Definition 12.1. The class number is | cl(L)|, nL.

Definition 12.2. A prime p is regular if p ∤ nQ(ζp).

The first irregular prime is 37 and there are only two more up to 100!

Example 12.3. Consider n = 2, so that Fermat’s Last Theorem doesn’t work. So
take x2 + y2 = z2.

We first reduce to the case where x, y, z are pairwise coprime. This is easy. Then
we can factor x2 + y2 as (x+ yi)(x− yi).

z is odd: then 2 is prime to z2. Hence no prime ideal factor (x± iy) lies over 2.
Then notice that x+ iy+x−yi = 2x and x+ iy− (x− iy) = 2iy, so if x+ iy, x− iy
share a common factor, that factor divides 2x, 2iy. But this is impossible since x, y
are pairwise coprime and no factor of x± iy divides 2. Therefore x+ iy is relatively
prime to x− yi. Thus x+ iy is, up to a unit, a square. Because ±1 are squares, we
know that x+ iy is either i times a square or is a square. If x+ iy = iα2, we have
y − ix = α2. By permuting if necessary, we can WLOG suppose that x+ iy = α2.
Thus x = m2 − n2 and y = 2mn for m,n ∈ Z where α = m+ ni.

z is even: Then x, y are both odd. Then (x + iy)(x − iy) is divisible by 4. No
factor on the left is divisible by 2, as otherwise x, y are even. Thus 1 + i | (x+ iy),
and divides it at most once. The same is true for x − iy. But we need a power of
4 to get that (x+ iy)(x− iy) is divisible by 4.

Question 12.1. What are the z such that x2 + y2 = z. Then z = N(α), α ∈ Z[i].
We can factor α as pk1

1 . . . so that N(α) =
∏

N(pi)
ki . Since N(p) = p2 for p ≡ 3

(mod 4), N(1 ± i) = 2, and N(p1) = p for p ≡ 1 (mod 4) and p1p2 = p. So z is a
sum of two squares iff the primes 3 mod 4 in it are to even powers (the p1, p2 must
come in pairs since z is an integer).

Theorem 12.4. Fermat’s Last Theorem is true for n an odd regular prime.

Proof. Since p is odd, we can look to find no solutions to xp − yp = zp. Suppose
FTSOC there was a solution. Then the LHS is

∏
(x − ζiy) where ζ = ζp. So we

have
∏
(x− ζiy) = zp.

Any prime factor of z has to appear in the LHS p times. But we hope that they
all land in one factor.

So we hope to show that each factor is relatively prime. Let ai = x − ζiy and
aj = x − ζjy for i ̸= j. Then ai−aj

ζj−ζi = y Solving for x, we get ai−ζi−jaj

1−ζi−j . Thus
only way that ai, aj can fail to be relatively prime is that it divides ζi−j − 1. Let
ℓ = i− j.

By conjugating, the norm of N(ζℓ−1) are all the same. Thus we want to compute
N(1 − ζ). This norm is p since it is ϕ(1) where ϕ is the minimal polynomial of ζ.
Since the discriminant is pp−2, p ramifies.

We want to know how p factors, and we do so by factoring ϕ(x). Then ϕ(x) =
xp−1
x−1 = (x−1)p

x−1 = (x − 1)p−1. Thus (p) ramifies into p − 2 prime ideals. Say
pZ[ζp] = p̃p−1.

We have that p̃ is principal iff there is an element of norm p, since taking norms
of both sides pZ[ζp] = p̃p−1 forces N(p̃) = p. For the inverse, if we have α of norm
p, then (α) factors as

∏
peii . We take the ideal norm of both sides to force the

prime ideals pying over non p primes to be zero powers and the power of p̃ to be 1
(as p̃ is the only prime lying over p).
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We have an element of norm p, 1− ζ. Thus (1− ζ) = (1− ζ2) = · · · . Thus 1−ζi

1−ζj

is a unit in Z[ζ]. Hence the potential only common factor of ai, aj is 1 − ζ. But
then 1− ζ | z so that p | z.

So suppose p ∤ z.
As each x−ζiy are coprime to each other and zp is a p-th power, then (x−ζiy) =

Ip for I | (x − ζiy). But then [Ip] = 0 so that p | | cl(L)|, contradicting our
assumption of p’s regularity.

If we have p ∤ z, then so far we have shown that (x − ζiy) = uit
p
i for some

ti ∈ Z[ζ]. Now we look at things mod p: Z[ζ]/p ∼= Z[t]/(ϕ, p) = Fp[t]/ϕ. The first
term is the same as Z[1− ζ]/p = Fp[s]/s

p−1. In this ring, raising anything to the
p power annihilates the s terms. Observe that x− ζy = x− y + (1− ζ)y.

We use what we have shown before to see that x − ζy = u1t
p
1 and x − ζp−1y =

up−1t
p
p−1. These two equations are complex conjugates of each other, so t1 = tp−1.

As tp1 ≡ t10 ≡ tp−1,0 ≡ tpp−1. We know that u1

up−1
∈ Z[ζ]×, and because u1 = up−1,

the absolute value of u1

up−1
is one. Thus u1

up−1
when decomposed into µ ⊕ Z

p−3
2

has no terms from the free part. Thus u1

up−1
= ±ζi. So by equating, (x − ζy) =

±ζi(x− ζp−1y) (mod p). This is a contradiction, since the powers of ζ form a basis
of Z[ζ]/p and p ∤ x nor p ∤ y (by symmetry) The only cases of overlapping basis
vectors are when i = 1, 2.

If i = 1, x− ζy = ±ζx− y. If x− ζy = ζx− y, then x = −y (mod p). But then
p | xp − yp = zp, a contradiction.

If i = 2, x−ζy = ±ζ2x−ζy. In this case, this implies that p | x, a contradiction.
Now suppose p | z. Let n be the largest power of p that divides z. Then

xp + yp + pnpzp0 = 0. Since (p) = (1− ζ)p−1, p = Σ(1− ζ)p−1 for Σ ∈ Z[ζ]×. So as
elements of Z[ζ],

αp + βp +Σ(1− ζ)pmγp = 0

where m = (p− 1)r. We shall prove that there is no solution with 1− ζ | αβγ with
Σ ∈ Z[ζ]×.

Translating to ideals,
∏
(α+ ζiβ) = (αp + βp) = (1− ζ)pm(γ)p.

Suppose m = 1. Then we have to distribute p terms of 1− ζ across
∏
(α+ ζiβ).

If each term in the product has exactly one (1−ζ), then α+ζiβ = (1−ζ)u for some
u ∈ Z[ζ]. Then notice that Z[ζ]/(1−ζ)2 ∼= Z[ζ]/(p, (1−ζ)2) ∼= Fp[1−ζ]/(1−ζ)2 ∼=
Fp[s]/s

2. So α+ ζiβ = uis ∈ Z[ζ]/(1− ζ)2 for ui ∈ (Z[ζ]/(1− ζ)2)×. As i varies,
we know that there must be j such that α + ζiβ = α + ζjβ (mod (1 − ζ)2) since
there are p− 1 choices for ui and p terms. Thus (ζi − ζj)β = 0 (mod (1− ζ)2) so
that (1− ζj−i)β = 0 (mod (1− ζ)2). But since (1− ζ) = (1− ζj−i), (1− ζ) | (β),
contradiction. Therefore none of them are divisible exactly once.

If one of them has multiplicity, then α + ζiβ = 0 (mod (1 − ζ)2). If two of the
indices have this property, then their difference is divisible by (1− ζ)2, forcing β to
be divisible by (1− ζ).

This argument works for m ≥ 2 to allow us to conclude that the Pidgeonhole
principle forces (1 − ζ)2 into exactly one term, say it is the j-th, and the rest are
divisible exactly once by (1− ζ). WLOG, we can assume that j = 0 by multiplying
β by powers of ζ. Thus α+ β = 0 (mod (1− ζ)pm−(p−1)) but not more powers.

Let (α, β) = g. □
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13. 2.24

Today we will be working in a Galois extension L/Q. In this case, efr = n.

Proposition 13.1. The Galois group action on the primes lying over an integral
prime is transitive.

Proof. Suppose otherwise, that σ(q1) ̸= q2 for all σ. By CRT, there exists x such
that x ≡ 0 (mod q1) and x ≡ 1 (mod σ(q2) for all σ. Then N(x) =

∏
σ(x) ∈ R∩q1.

But this is contained in q2, implying that by primeness, one of the σ(x) ∈ σ(q2), a
contradiction. □

Definition 13.2. The decomposition group of q, Gq is the stabilizer of G on q.

Then Gq′ is conjugate to Gq and all the conjugate subgroups also are the sta-
bilizer of a prime. The fixed subfield of L is called Lℓ. Then L/Lℓ is Galois with
Galois group Gq. Furthermore, [L : Lℓ] = ef and [Lℓ : Q] = r.

The number of primes lying over qd is one, because Gq acts transitively on the
primes lying over qd, and Gq fixes q. Furthermore, Sd is the smallest integral
extension in which q lies over only one prime (if there was σ ∈ H = Gal(E/Q) that
isn’t in Gq, then σq is also over OE ∩ q but isn’t q. Thus by reversing the order, we
get that Lℓ ⊆ E). Thus qdS = qe

′
. We have R/p → Sd/qd → S/q. Call the degree

of this latter map f ′. By considering L/Lℓ, we get that e′f ′ = [L : Lℓ] = ef .
We want f ′ = f, e′ = e. It is enough to show that R/p ∼= Sd/qd. As they are

both fields, it suffices to show that the map is a surjection. So take x ∈ Sd. We
want to find z ∈ R such that z = x (mod qd). Our plan is to find y ∈ Sd such that
N(y) = x (mod qd).

We know that NLℓ/Q(y) = y
∏

σy with σ ∈ G/Gq where these are the non-trivial
cosets. Now take y ≡ x (mod qd) and y ≡ 1 (mod σ(qd)) for all σ /∈ Gq. Then the
norm of y is x mod qd. Thus R/p ∼= Sd/qd, implying that fLℓ/Q = 1 and eLℓ/Q = 1

(the latter is because if p ramified in Lℓ, then we would have ramification degree
2e in L, a contradiction).

We also know that Gq acts on S/q.

Proposition 13.3. We claim that if S/q is Galois over R/p, then Gq → Aut((S/q)/(R/p))
is surjective, and furthermore p is unramified iff the map is a bijection.

Proof. If the map is surjective, then a group of ef size maps to a group of f size,
so e = 1.

WLOG, we can replace Q with Lℓ so that Gq = G. Take x ∈ S/q such that
R/p(x) = S/q. Take x̃ ∈ S such that x̃ (mod q) = x and let f be the minimal
polynomial of x̃. Then f(x̃) is mod p the minimal polynomial for x. Then f =∏
(t − x̃i). So we can switch the image of the roots around via the Galois group

action. Thus S/q over R/p is Galois. □

14. 2.26

Definition 14.1. The kernel of Gq → Gal((S/q)/(R/p)) is called Iq, the inertial
group.

Thus p is ramified if |Iq| ≠ 1.
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Example 14.2. Let R = Z. Then ∀p ∤ D, Gal(OL/q/Fp) = Z/fZ with a canoni-
cal generator: the Frobenius Frq. For a different prime q′, Frq′ is conjugate to Frq
because σ(q) = q′ gives us Frq′ = σ Frq σ

−1.

Example 14.3 (Σ3 Galois extension). Let L = Q(
√
−3, 3

√
(2))/Q. This is Galois,

being the splitting field of X3 − 2 (ζ3 ∈ L).
We have a sub quadratic field, so we have an integral basis 1, ζ3 for OQ[

√
−3].

Furthermore, we have a basis of L over Q(
√
−3) being 1, 3

√
2, 3

√
4. So a potential

basis is 1, ζ3,
3
√
2, ζ3

3
√
2, 3

√
4, ζ3

3
√
4.

The matrix P is then PQ(
√
−3)⊗PQ( 3√2). So the determinant of this is det(PQ(

√
−3))

[L2:Q] det(PQ( 3√2))
[L1:Q].

This is (−3)3 · (−27 · 4)2 = −39 · 24. So the only primes that could ramify are 2, 3.
We know for sure that 3 ramifies, because the real discriminant differs by a square,
and the power of 3 is odd. Hence 3 definitely divides the discriminant. Further-
more, 2 also ramifies because X3−2 is an Eisenstein polynomial for 2, so the index
isn’t divisible by 2.

We want to understand the frobenius element, so we look at conjugacy classes
in Σ3. There are three.

Now take p ̸= 2, 3. Then p is either split or inert. We know that p cannot be
inert, because then the decomposition group would be Σ3, but the decomposition
group is cyclic. If p = q1q2, then the Frobenius is a 3 cycle. If p = q1q2q3, then the
Frobenius is a 2 cycle. And if p splits completely, then the Frobenius is the identity.

Next, we look at how p ̸= 2, 3 factors in Q(
√
−3). Then if (p) is inert in

Q(
√
−3), then (p) has to split into 3 pieces (it can’t be inert) because the degree

of L/Q(
√
−3) is 3. This behavior depends on whether −3 is a square mod p. In

Q( 3
√
2), the behavior depends on whether 2 is a cube mod p. If 2 isn’t a cube, then

p splits into two primes in L.

Theorem 14.4 (Chebotarev Density Theorem). Let L/Q be Galois with Galois
group G, C ⊆ G be a conjugacy class, for x let AC

x = #{p prime |p is unramified ,Frp ∈
C}. Then

AC
x

#{p prime |p < x}
→ #C

#G
.

Example 14.5. Take Q(
√
−3). Then G = Z/2Z. Then (p) is inert iff p is 2 mod

3. So Chevotarev tells us that half the primes are 1 mod 3 and the other half is 2
mod 3.

Example 14.6. Take y2 = x3 − ax + b and C[x][y]. There is a map into C
with fibers bounded in size by 3. Here, (x − λ) =

∏
qeii . Since S/qi is finite over

R/(x− λ) = C, there is just ramification.
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