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Abstract. The classification of objects is a fundamental problem in any
branch of mathematics. In birational geometry, we aim to study the clas-
sification of varieties under birational equivalence. Specifically, two varieties
are birational if they are isomorphic everywhere except for a lower-dimensional
locus. This property preserves many invariants, and it is well-known that in
characteristic 0, every projective variety is birational to a smooth one. How-
ever, for a given variety, there can be several smooth varieties that are bi-
national to the given one, leading to the natural question of whether we can
select the simplest smooth variety in each birational equivalence class. This
simplest variety is called a minimal model. This leads to the Minimal Model
Program (MMP), which has been a central framework in birational geometry
for many years.In this lecture, we will discuss the basic notions and frame-
works of birational geometry and explore how the MMP works for surfaces
and its generalization to higher-dimensional varieties. The termination of the
MMP in higher dimensions remains an open question. This lecture aims to
highlight the motivation and general spirit of birational geometry over fields
of characteristic 0.
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1. Birational Geometry

Geometry over local fields is not very developed today. We will work with clas-
sical varieties, potentially projective, not schemes.

Definition 1.1. A rational map is a map f : X 99K Y consisting of pairs ⟨ϕ, ϕU ⟩ :
U ⊆ X an open set and ϕY : U → Y is an actual morphism such that ⟨U, ϕU ⟩ ∼
⟨V, ϕV ⟩ : ϕU |U∩V = ϕV |U∩V .

I.e. it is defined “almost” everywhere as open sets on varieties are typically large
(dense).

Definition 1.2. A birational map is a rational map with a rational inverse
(composition is true identity).

Say that two varities are birational if there is a birational map between them.
Birational geometry tries to classify varieties up to birationality. For example,

we might want to distinguish smooth, non-singular, singular, etc. It is split up into
3 fields:
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(1) Resolution of singularities: we want to find a map that preserves interesting
properties to a non-singular variety

(2) Minimal model program (MMP): imagine we have a large birational variety
class, take the smooth ones, and we want to pick the “best” one

(3) Rationality: a rational variety is a variety that is birational to projective
space, which is nice because it allows us to locally introduce coordinate

Observation 1.3. Take two varieties, X,Y . The following are equivalent:
(1) X,Y birational
(2) ∀U ⊆ X,V ⊆ Y s.t. U ∼= V with U, V open
(3) K(X) ∼= K(Y ) as k-algebras

Observation 1.4. Take two projective, normal varieties, X,Y with a birational
map f : X 99K Y between them. Then with U ⊆ X the largest open set on which
X \ U is closed and codimX \ U ≥ 2.

This implies that two smooth birational projective curves are isomorphic because
we can’t find a subset of codimension larger than 2 in it.

Theorem 1.5 (Hironaka Resolution Theorem). For all projective varieties X over
a characteristic 0 field, ∃Y a smooth projective variety s.t. X,Y are birational.

This is open for characteristic p with dim ≥ 4. The existence isn’t as useful as
actually having the construction. We have one!

1.1. Blow up. Imagine A2 with (0, 0) in it. Now to blow this up, we want to
replace the point with the projective line and modify the plane such that it remains
isomorphic to it while integrating with the line nicely i.e. a spiral. Formally, the
plane is now {(x, y)[z : w] : xz = yz} ⊆ A2 ⊂ P. Here we have the projection π
that makes the rest of the plane isomorphic. Then π−1((0, 0)) ∼= P, i.e. an effective
divisor.

In general, given a smooth projective surface S, (S′ is the blowup) π : S′ → S is
a blow up of a point P E = π−1(P ) is an exceptional divisor. Further, E ∼= P1.

Exercise 1.1.1. E2 = E.E = −1.

This negative self-intersection number implies that intuitively, we can’t wiggle
it at all (in the sense that blow ups introduce wiggle room to let us distinguish
intersection points with multiplicity).

Now imagine P2 and a normal curve in it. Now we blow up this curve at its
self-intersection.

Definition 1.6. Let C be an irreducible curve, S be a smooth projective surface.
Then with, π : S′ → S the blowup at a point P , call π−1(C \ P ) the strict
transformation.

Theorem 1.7. Given an irreducible curve C ⊆ S a smooth projective surface, ∃ a
sequence of blowups

sm → · · · → S0 = S

s.t. the strict transformation Cn of C is smooth at each level.

A nice property of this is that arithmetic genus drops with each step.
We can also classify the type of singularities: nodal ones have two tangent di-

rections and cuspidals have one (maybe I misheard the number). For example, the
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Figure 1. Nice picture of blowup from Hartshorne

blowup at the tip of a cone would become P1 because there are this many tangent
vectors.

2. Surfaces

Imagine we start with a smooth surface S. The idea of Italian geometers of days
past is that the definition of the nicest surface in a birational class can’t be blown
down. The idea of blowdown is to take a rational curve that with self-intersection
equal to -1 and contract it to a point.

Proposition 2.1 (Castelnovo). Given a smooth projective surface S, there is a
rational curve C with negative self intersection s.t. there is S0 and f : S → S0 s.t.
f is a blow up of a point with S0 smooth.

Definition 2.2 (“naive” definition of minimal surface). A minimal surface is the
one that doesn’t have a -1 curve.

What about P1 × P1? This is an exception, leading to more development of the
theory. We really only want to consider varieties s.t. ∃d with dimH0(X,ωd

X) ̸= 0
(K(X) ̸= −∞). In the case of surfaces, this exclusions ruled surfaces and P2.

Now what about higher dimensions? The above definition was good enough for
surfaces, but not for curves.

Definition 2.3. We say that a smooth projective surface S is the minimal model
if ks, the canonical divisor is nef (kS .C ≥ 0).

The canonical divisor is just a representation of the set of canonical bundles?
This is equivalent on surfaces to the above criterion. The proof is vaguely due to

the adjunction formula: If ks is nef =⇒ kS .C ≥ 0∀ irreducible C. If kS is nef and
there exists a -1 curve, then kS .E ≥ 0 for this -1 curve E as well. By realizing the
canonical divisor on E as the canonical divisor on P1, deg kE = (kS + C).C Then
−2 = kS .C+C2 ≥ −1, a contradiction. Hence the minimal model has no -1 curves.

The other direction uses information theory?
For surfaces, MMP works well. Take a surface, contract -1 curves, to get S′

and finish. This algorithm terminates because the Picard number drops. As the
dimension increases, different kinds of singularities can arise.
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Definition 2.4. Call X a projective variety a minimal model if kX is nef and X
has terminal singularities.

Take a smooth projective variety X has its canonical divisor nef, then we are
done by above theorem. If it isn’t, then there is C on X s.t. kX .C < 0. By
contracting it, we get a sequence

X → X1 → · · · .
But we aren’t sure if this terminates nor do we know if contraction reduces the
number of singularities or preserves the canonical divisor as a Cartier one. Instead,
we replace Xn → Xn+1 that is bad with “flip”. The flip operation replaces the curve
s.t. there are no more bad things.

We want to intuitively think about it as having a line in a plane and then rotating
it. Now we have two questions:

(1) Why does flip exist
(2) Why does the flip terminate the sequence

The first question is yes, the second is open.
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