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1. Lecture 1

The title is literally false advertising. We will talk about raising and lowering
operators, which are needed to understand the things in the title, but aren’t exactly
them.

1.1. Raising and Lowering Operators. Fix a vector space over C and let h, e, f
be linear operators on V . They interact as follows:

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h

where [a, b] = ab − ba, the commutator. Commutators measure how much two
elements fail to commute, in the sense that if they commute, the commutator is 0.

Example 1.1. Let V = C2. Then with

(1.2) h =

[
1 0
0 −1

]
, e =

[
0 1
0 0

]
, f =

[
0 0
1 0

]
they span

sl2(C) = {A ∈ Mat2(C)| trA = 0}.
We write sl2 as shorthand.

We have the following isomorphism:
1
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{operators h, e, f on V satisfying
Equation (1.2)}

∼= {linear maps ϕ : sl2 →
EndC(V ) satisfying ϕ([A,B]) =
[ϕ(A), ϕ(B)]} .

The backwards direction is that ϕ 7→ h = ϕ(h), e = ϕ(e), f = ϕ(f). The bottom
is are the sl2-representations on V .

Note that the commutator relation is not associative. Instead it satisfies the
Jacobi identity:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

1.2. Finite Dimensional Representations. We’re going to classify all finite di-
mensional representations. The infinite dimensional ones are subtle.

Definition 1.3. Let V 1 := C2 = Cx⊕Cy be the standard representation. The
group action can be as follows: hx = x, hy = −y, ex = 0, ey = x, fx = y, fy = 0.
We have the following diagram:

• y x •
f,0

h,−1
e

f

h,1

e,0

Example 1.4. Let λ ∈ Z, λ ≥ 0 and

V λ := Symλ(V 1) =

λ⊕
k=0

Cxλ−kyk.

Then dimV λ = λ + 1. We want sl2

⟳

V λ by extending sl2

⟳

V 1 using the Leibniz
rule. In abstract algebra, we typically extend linearly by acting on x, y individu-
ally. But we want the action to act like differentiation because sl2 is sort of the
“derivative” group of SL2. So

(A ∈ sl2, f, g ∈ Sym(V 1)) A(fg) = (Af)g + f(Ag)

i.e. the Leibniz rule.
We have a trivial representation V 0 = C. Here, A1 = A(1·1) = (A1)·1+1·(A1) =

A1 +A1 =⇒ A1 = 0. This is the trivial action.

Example 1.5. We have

B2 = Cx2 ⊕ Cxy ⊕ Cy2 ∼= sl2.

This is because x2, xy, y2 are like e, f, h. The action is

hx2 = (hx)x+ x(hx) = x2 + x2 = 2x2

hxy = (hx)y + x(hy) = xy − xy = 0

hy2 = (hy)y + y(hy) = −2y2

This is called the adjoint representation. Further, ex2 = 0, exy = x2, ey2 = 2xy.
The operator f is the lowering operator, so fx2 = xy, fxy = y2, fy2 = 0. The
diagram is

• y2 xy x2 •
f,0

h,−2

e,1

f,1

h,0

e,1

f,2

h,2

e,0
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In the general case, λ ∈ Z, V λ =
⊕λ

k=0 Cxλ−kyk. The action is hxλ−kyh =
(λ− 2k)xλ−kyk. We expect e to raise the power of x, and exλ−kyk = kxλ−k+1yk−1

and f to lower, so fxλ−kyk = (λ− k)xλ−k+1yk+1.
Notice that h acts diagonalizably on V λ with eigenvalues (all multiplicity one)

λ, λ−2, λ−4, · · · ,−λ+2,−λ. For all h eigenvector with eigenvalue µ, we have the
following: For v ∈ V λ, ev = 0 ⇐⇒ λ = µ; otherwise ev is an h-eigenvector with
eigenvalue µ+ 2. Likewise, fv = 0 ⇐⇒ µ = −λ; otherwise fv is an h-eigenvector
with eigenvalue µ− 2.

Exercise 1.2.1. Prove that V λ is irreducible as an sl2 representation ∀λ ≥ 0.
(Hint: any non-zero subrepresentation is in particular stable under the action of h,
hence has an h-eigenvector).

Theorem 1.6. Finite dimensional sl2 representations can be classified as follows:
(1) any finite dimensional irreducible sl2 representation is isomorphic to V λ

(2) any finite dimensional sl2 representation is isomorphic to a direct sum of
irreducibles

These representations come up in the theory of spin. The spin is half of the
eigenvalue of h.

Proof sketch of 1: The weights on V , a sl2 representation are the h-eigenvalues.
A highest weight vector is an h-eigenvector v s.t. ev = 0. For example, V λ has the
highest weight vector xλ, but one could take a direct sum of two different V λ, V µ

and have highest weight vectors that aren’t the largest h-eigenvalue.
Step 1: dimV < ∞ =⇒ V contains a highest weight vector.
Step 2: dimV < ∞, V irreducible =⇒ V has a unique highest weight vector up

to scaling.
Step 3: dimV < ∞, V irreducible, V has unique highest weight λ =⇒ V ∼= V λ.
For ii: one can get an action of SU2 on the group, which is compact, allowing

us to do the averaging trick. This is sort of analytic.
Next time we will talk about highest weight representations.

Definition 1.7. V is a highest weight representation of sl2 if
(1) V is finitely generated as sl2 representations, i.e. there is a finite set of

vectors such that all representations containing it are V .
(2) h

⟳

V diagonalizably;
(3) e

⟳

V locally nilpotently, i.e. ∀v ∈ V, env = 0∀n >> 0 (n can depend on v).

A typicaly highest weight infinite dimensional representation has the operation
diagram of V 1, but infinitely to the left.

2. Lecture 2

Addendum: the sketch of classifying finite dimensional sl2 representations, we
have to check that, for finite dimensional representations, the weights are integral.
This is something unique to the finite dimensional representations, as the eigenval-
ues of h are integral.

2.1. Universal Enveloping Algebra.

Claim 2.1. ∃ associative C-algebra U(sl2) (i.e. a ring with C in its center) satis-
fying the following properties:
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(1) ∃ injective ι : sl2 ↪−→ U(sl2)
(2) ι([A,B]) = [ι(A), ι(B)]∀A,B ∈ sl2
(3) a universal property: for any associative C-algebra with ϕ : sl2 → R that

is C-linear s.t. ϕ([A,B]) = [ϕ(A), ϕ(B)] for all A,B ∈ sl2, then there is a
unique C-algebra homomorphism ϕ̃ : U(sl2) → R s.t. ϕ̃ ◦ ι = ϕ, i.e.

sl2 R

U(sl2)

ϕ

ι
ϕ̃

Exercise 2.1.1. Formulate and prove uniqueness of U(sl2).

Remark 2.1. Note that Mat2(C) satisfies (i-ii) but not (iii). In a sense, this ring
is larger than the universal enveloping algebra.

Proof of Existence. We start with the tensor algebra:

T (sl2) :=
⊕
d≥0

sl⊗d
2 .

This is a free associative algebra on sl2 as a vector space, but might not follow
property (ii). This, like a polynomial ring has a basis consisting of monomials, e.g.
e2 ⊗ h⊗ f3 ⊗ h4 ⊗ f (note that terms don’t commute). Now let I ⊆ T (sl2) be the
two-sided ideal generated by A⊗B −B ⊗A− [A,B]. Now let U(sl2) := T (sl2)/I.
This forces the relation A ⊗ B − B ⊗ A = [A,B], i.e. [ι(A), ι(B)] = ι(A,B) with
ι : sl2 ↪−→ T (sl2) ↠ U(sl2). □

Theorem 2.2 (Poincaré-Birkhoff-Witt). The monomials hiejfk(i, j, k ≥ 0) form a
basis for U(sl2). Same for any other ordering. I.e. we have a C-linear isomorphism
(but not an associative algebra isomorphism) U(sl2) ∼= Sym(sl2).

This is true for any lie algebra as well.

Finally, the benefit of this is that V a sl2 representation ⇐⇒ sl2 → EndC(V ) ⇐⇒
there is a unique associative algebra homomorphism U(sl2) → EndC(V ), giving V
a U(sl2) module structure.

So {sl2 − representation structures on V } ∼= {U(sl2 − module structures on V }.

Corollary 2.3 (Casimir Operator). The product of things in the Lie algebra isn’t
closed. But the RHS is. The Casimir Operator helps us combine these ideas.

Ω :=
1

2
h2 + ef + fe ∈ U(sl2).

We have that Z(sl2) := Z(U(sl2)) = {x ∈ U(sl2)|xy = yx∀x ∈ U(sl2)}, i.e. the
center.

Exercise 2.1.2. Ω ∈ Z(sl2).

Remark 2.4. Z(sl2)∩sl2 = {0}, giving the universal enveloping algebra more nice
properties (namely having a non-zero center).

A common technique when studying an algebra is to compute the center, which
is hopefully large, and study modules over the center.

Theorem 2.5 (Harish-Chandra). Z(sl2) = C[Ω].
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2.2. Highest Weight Representations. Let V be a sl2 representation.

Definition 2.6. Call V a highest weight representation if
(1) V is finitely generated as a sl2-representation, which with our new tool of

universal enveloping algebra, it is just that V is f.g. as a U(sl2)-module.
(2) h acts diagonalizably on V , which is motivated by this being a property of

finite dimensional ones
(3) e acts locally nilpotently on V (this allows us to manufacture highest weight

vectors)

e.g. any finite-dimensional representation is highest weight. The condition i) is
met easily, and ii-iii) follow from the classification of finite dimensional representa-
tions as a direct sum of V λ.

Example 2.7 (Verma). Non-finite dimensional representation:

G := Ch+ Ce =
{[

a b
0 −a

]
| a, b ∈ C

}
⊆ sl2

which is stable under [−,−].
Now we are going to use the same technique as for SL2(Fq): the principal series.
Let Cλ := C with G-action given by h1 = λ, e1 = 0. This then makes Cλ a left

module over U(G).

Definition 2.8 (Verma Module). Mλ := U(sl2)⊗U(G) Cλ. A priori, this is just a
vector space, but the action of U(sl2) via multiplying on the left makes it a U(sl2)
module, making it a sl2 representation.

By Theorem 2.2, Mλ ∼= C[f ] as a vector space via fn ⊗ 1 7→ fn. Hence Mλ

is infinite dimensional. Now ∀k ∈ Z≥0, let vλ−2k := fk ⊗ 1 ∈ Mλ. Hence Mλ =⊕
k≥0 Cvλ−2k.

Proposition 2.9.
(1) fvλ−2k = vλ−2k

(2) hvλ−2k = (λ− 2k)vλ−2k

(3) evλ−2k = k(λ− k + 1)vλ−2k+2.
Now we have this diagram of operations

· · · • • • • •

λ−6 λ−4 λ−2 λ

0

Corollary 2.10. Mλ is irreducible ⇐⇒ λ /∈ Z≥0.

Proof. If λ ∈ Z≥0, then Mλ fits into a SES

0 → M−λ−2 → M → V λ → 0

i.e. the image of a map equals the kernel of the map after it.
This doesn’t split, i.e. Mλ ̸∼= V λ ⊕ M−λ−2. This is our first example of a

non-semisimple module. □

Finally, we classify the decompositions:

Lλ :=

{
V λ if λ ∈ Z≥0

M ‘λ if λ /∈ Z≥0
.
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So λ ̸= µ =⇒ Lλ ̸= Lµ.

Corollary 2.11. Any irreducible highest weight sl2 representation is isomorphic to
Lλ for a unique λ ∈ C.

But non-semisimple highest weight representations exist because representations
might not decompose into a direct sum of irreducibles. Now we have to classify
indecomposable representations. The Vermas modules are a good example as they
have a non-trivial subrepresentation, but doesn’t split as a direct sum.

Now let O = {highest-weight sl2 representations}, the “BGG category O”. Let
O0 = {V ∈ O|Ω acts locally nilpotently on V }. Because Ω acts locally finitely on
V , Ω can decompose things nicely. Here Ω has only eigenvalues 0.

Theorem 2.12. O0 contains exactly 5 indecomposables:

L0 = C0, L−2,M0, (M0)V , P−2.

The first two are irreducible. The fourth is the dual Verma, and duality preserves
irreducibility. The P−2 is the “big projective”. It has a composition series of length
3:

0 → M0 → P−2 → L−2 → 0.

Recall that M0 has L0, L−2 in it, so P−2 has a decomposition series with L0, L−2, L−2.

3. Lecture 3

3.1. Block Decomposition. Z(U(sl2)) ∼= C[Ω] with Ω the Casimir operator 1
2h

2+
ef +fe. Denote O for the set of highest weight sl2-representations. Because U(sl2)
is not semisimple, we don’t have decompositions into irreducibles. But we have
decompositions into indecomposables.

Before, we restricted to locally nilpotent actions by the Casimir operator. This
is fine though because V ∈ O =⇒ Ω acts locally finitely on V . I.e., ∀v ∈
V, span(v,Ωv,Ω2v,Ω3v, · · · ) is finite dimensional.

Proof. This span is C[Ω]v. This means that V ∼= ⊕V[λ] of generalized eigenspaces
of Ω.

Let s·λ = −λ−2, i.e. s is like reflection over −1. So C/ ⟨s⟩ ∼= C via λ 7→ 1
2λ(λ+2)

except at −1. This is because Ω

⟳

Lλ by scalar 1
2λ(λ+2). Similarly, Ω

⟳

L−λ−2 by
scalar 1

2λ(λ+ 2). The index of the decomposition is over [λ] ∈ C/ ⟨s⟩ and V[λ] the
generalized eigenspace of eignevalue 1

2λ(λ+ 2).
Finally, define O[λ] = {V ∈ O|V = V[λ]} which has irreducibles Lλ, L−λ−2 except

at λ = −1 which has multiplicity 2. □

Now last time, we said that O[0] contains 5 indecomposables. We have L0, L−2,
M0, (M0)∗, P−2 with the first two being irreducible. If λ ∈ Z≥0, then O[λ]

∼= O[0].
Thus λ ∈ C \ Z≥0 =⇒ O[λ] is semisimple.

3.2. The Projective Line. We are always over C.

Definition 3.1. P1 = {one dimensional subspaces of C2}. We view P1 as an
algebraic variety over C. I.e., we only consider polynomial functions instead of
homomorphic.
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Let An = Cn as a variety. Then Fun(An) = C[x1, . . . , xn]. We can map A2 \{0}
to P1 via (x, y) 7→ [x : y] := C · (x, y) (as a line). The square brackets are called
homogenous coordinates.

We also have inhomogenous coordinates via A1
0 := {[x : y]|x ̸= 0} ⊊ P1, i.e.

A1
0 = P1 \ {∞} with ∞ = [0 : 1]. The local coordinates are

A1 ∼= A1
0 : t 7→ [1 : t].

So P1 = A1
0 ∪ {∞}. But we also have a different local coordinate system:

A1
∞ = {[x : y]|y ̸= 0} = P1 \ {0}

with 0 = [1 : 0]. Then P1 = A1
0 ∪ A1

∞ each with different coordinates, and on their
intersection, their coordinates are reciprocal. Let t be the coordinates on A1

0 and s
be the coordinates on A1

∞.

Claim 3.1. Fun(P1) only has constant global functions. Algebraically, this is say-
ing that f ∈ Fun(P1), then restricted to the two affine parts above, we have f |A1

0
=∑

n≥0 ant
n and f |A1

0∩A1
∞

=
∑

n≥0 ans
−n. But f has no poles, so an = 0, n > 0.

3.3. Vector Fields. We have that Vect(A1) = C[t] ddt .

Claim 3.2. We have d
dt , t

d
dt , t

2 d
dt ∈ Vect(A1

0) extend uniquely to vector fields to
P1. In fact, they form a basis for Vect(P1).

Proof. By the chain rule,
d

dt
=

ds

dt
· d

ds
= − 1

t2
d

ds
= −s2

d

ds
.

Hence ξ ∈ Vect(P1) =⇒ ξ |A1
0
=

∑
n≥0 ant

n d
dt and ξ |A1

0∩A1
∞
=

∑
n≥0 ans

−n(−s2) d
ds =

−
∑

n≥0 ans
2−n d

ds . Thus an = 0 for n > 2. This forms a basis of Vect(A1
∞). □

We want to develop a Lie bracket to capture this differential.

3.4. Differential Operators. Diff(A1) = ⊕n≥0C[t] d
n

dtn . We can see that this is
an associative C-algebra via the key relation via composition of operators. I.e., we
have [

d

dt
, f(t)

]
= f ′(t)

where this is the commutator bracket. A point of potential confusion is that f(t) is
the operator of multiplying by f(t), not applying the function f(t). I.e., d

dt (fg) −
f dg

dt = df
dtg. This algebra is non-commutative.

Question 3.1. What is Diff(P1)?

We can restrict via an injection (injection due to density of affine space) Diff(P1) ↪−→
Diff(A1

0) via ξ 7→ ξ|A1
0
. The image of this isn’t very easy to described explicitly.

For example, consider t4 d2

dt2 = d2

ds2 + 1
s

d
ds , which doesn’t extend to P1 as 1

s has a
pole. Another weird example is t4 d2

dt2 + 2t3 d
dt =

d2

ds2 does extend.

Remark 3.2. If we have ξ, η ∈ Vect(P1) ⊆ Diff(P1), then [ξ, η] ∈ Vect(P1).

Now identify sl2 ∼= Vect(P1) via h 7→ −2t d
dt , e 7→

d
dt , and f 7→ −t2 d

dt .

Exercise 3.4.1. Show that this isomorphism respects the respective brackets.
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The reason that sl2 appears here is that SL2 acts on P1. The above isomorphism
of Lie algebras makes sl2 a tangent vector like thing on P1.

We have
sl2 Vect(P1)

U(sl2) Diff(P1)

∼

ϕ

Exercise 3.4.2.

Claim 3.3. ϕ(Ω) = 0

Proof. Exercise! □

Define U(sl2)0 := U(sl2)/ΩU(sl2). Thus we have a homomorphism ϕ : U(sl2)0 →
Diff(P1).

Theorem 3.3 (Beilinson-Bernstein). ϕ is an isomorphism.

Proof Sketch. Both sides of this are non-negatively filtered as rings: degree on the
left, n-th derivative on the right. Due to this, it suffices to show that there is an
isomorphism on the graded level (note that ϕ respects the grading), i.e.

grϕ : grU(sl2)0 ∼= grDiff(P1).

Because they commute up to lower order terms, focusing on one grading makes them
commutative. We have grDiff(P1) ↪−→ Fun(T ∗P1). Further, we have grU(sl2)0 ∼=
Fun(N ) for a variety N . If we have an isomorphism Fun(N ) → Fun(T ∗P1), then
we are done. I.e.,

grU(sl2)0 grDiff(P1)

Fun(N ) Fun(T ∗P1)

∼

∼

∼

Call this bottom map ∗.

Let N = {A ∈ sl2|A2 = 0}. I.e.,
{[

a b
c −a

]∣∣∣∣a2 + bc = 0

}
. This is the nilpotent

cone (stable under scaling). We have that T ∗P1 ∼= {(L,A)|L ∈ P1, A ∈ N , A(C2) ⊆
L} (cotangent bundle).

We have that ∗ is pullback along µ : T ∗P1 → N that sends (L,A) 7→ A, i.e. the
moment map.

Observation 3.4. (1) µ−1(0) ∼= P1

(2) µ : T ∗P1 \ µ−1(0) ∼= N \ {0}
(3) µ is a proper map (i.e. preimage of compact sets are compact).

These observations imply that this is an isomorphism.
This map looks like blowup. □

4. Lecture 4

We will be thinking of representations as sheaves.

4.1. What is a sheaf?
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4.1.1. Categorification. This is a non-formal concept.
At the lowest abstraction is a number. Then vector space. Then category, and

possible 2-category, and etc.
We can sort of go backwards: vector spaces have dimension, a category has a

Grothendieck space, K0.
Another non-abstract object is a function, which is a thing assigning numbers to

numbers. A level up from this is a sheaf, which assigns vector spaces to each point.

Definition 4.1. Let X be a space (e.g. varieties, smooth manifolds, etc.). A sheaf
F on X is something that takes a point x ∈ X and maps it to Fx ∈ Vect. This is
called the fiber.

The slogan is that sheaves are the categorification of functions. We can assign
to X Shv(X) = {a flavor of sheaves on X}.

Now take f : X → Y a map.

Definition 4.2. We have the inverse sheaf f∗ : Shv(Y ) → Shv(X) the inverse
image defined by

(f∗F )x = Ff(x).

Example 4.3. Subsheafs are the inverse sheaf of inclusion.

Definition 4.4. Let f∗ : Shv(X) → Shv(Y ) be the direct image sheaf, and
think of it like integration along the fibers of f , which isn’t perfectly defined all the
time as with the inverse image. Sheaves are analogous to distributions (which are
always integrable along fibers).

Example 4.5. Take ρ : X → pt, F ∈ Shv(X) produces ρ∗F ∈ Vect which is like∫
X

F .

The key property that we want with these is that

Property 4.6.
HomShv(f

∗F ,G ) = HomShv(F , f∗G ).

We have some exceptional functors:

f! : Shv(X) ⇄ Shv(Y ) : f !.
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This satisfies
HomShv(Y )(f!G ,F ) = HomShv(X)(G , f !F ).

This is special because we have a reverse direction nice map.
We have notions of proper (preimage of compact is compact, e.g. closed embed-

ding) where f! = f∗ and open embedding where f ! = f∗.
Another key notion is base change:

X ×Y Z X

Z Y

g′

f ′

g

f

The key property here is that

g!f∗ ∼= f ′
∗(g

′)! g∗f! ∼= f ′
! (g

′)∗.

Example 4.7. Say we have an open embedding, j : U → X. Then j!F is the
“extension by 0”. We have

∅ Y

U X
j

i

Can also see an exercise in Hartshorne Chapter 2 section 1. We have the relation
i∗j!F = 0.

Technically, everything here needs to be derived. This adjective means that
instead of vector spaces, we instead work with complexes.

4.2. Quasicoherent Sheaves. Define

QCoh(A1) := C[t]− modules = Fun(A1)− modules.

This is a sheaf via defining M ∈ QCoh(A1),∈ A1 7→ Ma := M/(t−a)M ∈ Vect.
E.g., OA1 = C[t] and (OA1)a ∼= C. This is “constant”.

Let OA1 ∼= TA1 = Vect(A1) = C[t] ddt ∼= C[t] with the last iso via f d
dt 7→ f .

Question 4.1. What about P1? Here Fun(P1) ∼= C.

Similarly, QCoh(P1) should contain vector bundles on P1, etc.
But the above definition of QCoh is only correct for affine varieties, i.e. those

of the form
{f1 = · · · = fm = 0} ⊆ An

for some n ∈ N, f1, · · · , fm ∈ C[t1, . . . , tn].
This isn’t global, for affine X , dimFun(X) < ∞ =⇒ X is finite. Affine sets

have infinite dimensional global functions. Thus P1 isn’t affine.

Example 4.8. Consider A1 \ {0}. This is relevant as the overlap between the
two charts on P1. This doesn’t look affine, but it is affine via A1 \ {0} ↪−→ A2 via
t 7→ (t, t−1). So A1 \ {0} ∼−→ {xy = 1}.

This is nice because the overlap between the charts it then affine. So Fun(A1 \
{0}) = C[t, t−1].



CREATION AND ANNIHILATION AS DIFFERENTIAL OPERATORS ON THE RIEMANN SPHERE11

Finally, consider j : A1 \ {0} → A1. If we have M ∈ QCoh(A1), we get j∗M =
M |A1\{0} := C[t, t−1] ⊗C[t] M ∈ QCoh(A1 \ {0}). This notation is unambiguous
because j is an open embedding.

Now on P1, we have the coordinates s = t−1. In particular, C[t, t−1] = C[s, s−1].
So we can describe QCoh(P1) := {(M0,M∞, α)|M0 ∈ QCoh(A1

0),M∞ ∈ QCoh(A1
∞), α :

M0|A1
0\{0}

∼= M∞|A1
∞\{∞}} (here the M0 is different from the M0 from before). Be-

cause the restriction sets are affine, this doesn’t cause any definitional issues as
restriction sheaves.

E.g., OP1 = (OA1
0
,A∞, idO). We also have the tangent sheaf TP1 = (TA1

0
,TA1

∞
, idT ).

We have that TA1
0\{0} = C[t, t−1] ddt = C[s, s−1](−s2) d

ds = C[s, s−1] d
ds = TA1

∞\{∞}.
Let ρ : P1 → pt leads to p∗ : QCoh(P1) → Vect which is the “global sections”

ρ∗F = Γ(P1,F ).

If F = (M0,M∞, α), then

Γ(P1,F ) = ker(M0 ⊕M∞ → M∞|A1
∞\{∞})

with the latter map sending (m0,m∞) 7→ α(m0)−m∞, with the latter term helping
deal with overlap.

For example, Γ(P1,OP1) = Fun(P1) ∼= C and Γ(P1,TP1) = Vect(P1) ∼= sl2.
One could imagine instead of id, we have a twist. This twist gives us the standard

structure sheaf. We have an action of SL2 on this via action on the structure sheaf,
so a natural question is what finite dimensional representations come from this?

4.3. D-modules. Let DA1 := Diff(A1).

Definition 4.9. Define D −mod(A1) as the DA1 modules.

E.g., we have DA1 := DA1 thought of as a left module over itself. Another
example is OA1 := C[t], but the action here isn’t as clear. The action is the obvious
action: d

dt · f = f ′. This is what we want to think of as the constant sheaf.
Now we begin handwaving.
Similarly, we can think about D −mod(A1 \ {0}). Here the result is that

DA1\{0} = ⊕n≥0C[t, t−1]
dn

dtn
.

We have the function j : A1 \{0} → A1. If we have M ∈ D−mod(A1), we produce
j∗M = C[t, t−1]⊗C[t] M . The action of DA1\{0} is given by

ξ ∈ Vect(A1 \ {0}),m ∈ M

ξ ·m ∈ j∗M,f inC[t, t−1]

ξ(f ⊗m) = (ξf)⊗m+ f(ξ ·m)

this way it satisfies a Lie-algebra looking rule.
Analogously for QCoh(P1), define

D −mod(P1) := {(M0,M∞, α)| · · · }

We have
oblv : D −mod(P1) → QCoh(A1)

which is the forgetful functor forgetting the action. Then define

Γ(P1,M) := Γ(P1, oblvM).
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Note that this isn’t the direct image in D−mod. By the naturality of this construc-
tion, we have DP1

⟳

Γ(P1, oblvM) = Γ(P1,DP1). So Γ : D−mod(P1) → DP1 −mod.

Theorem 4.10. This is an equivalence!

This is summarized as P1 being D-affine.
Last time, Beilinson-Bernstein gave us that

DP1 ∼= U(sl2)0.

Similarly, here Γ : D −mod(P1)
∼−→ U(sl2)0 −mod called Loc.

Now we want to localize O[0].
Problem: this doesn’t quite fit, as U(sl2)0 has the Casimir acting as 0 whereas

O[0] acts diagonally.
So O[0] ̸⊂ U(sl2)0 − mod. But we can tweak Loc to get Loc′ : O[0] ↪−→ D −

mod(P1). This isn’t an equivalence, but is fully faithful.
Let i : {∞} ↪−→ P1. Then idR,∗ : Vect = D − mod(pt) ⇄ D − mod(P1) : id!

R.
This notation of functions and arrows on each side is adjointness.

Finally, Loc′ has image

D −mod(P1)Ga

hol := {M ∈ D −mod(P1)|j∗M ∼= O⊕r
A1 }

(notation may be slightly off) and dim(Ri!dRM) < ∞.
Let δ∞ := idR,∗C. This tweaked equivalence Loc′ : O[0]

∼−→ D − mod(P1)Ga

hol

that sends triv(C) = L0 7→ OP1 , L−2 7→ δ∞, M0 7→ j!OA1 , (M0)∗ 7→ j∗OA1 , and
finally P−2 7→ P∞. I.e., these objects in the image are the simple modules in the
latter category. This last object is still mysterious. We are still on the hunt for a
geometric description of these representations.

We have the exact sequence

0 → j!OA1 → P∞ → δ∞ → 0.

The computation Ext1D−mod(P1)(δ∞, j!OA1) = Ext1(C, Ri!dR,j ;OA1). The latter
equals H1(R1idRj!OA1). By the contradiction principle, this is isomorphic to HdR

0 (A1\
{0})[−1]. We also have the isomorphism to HdR

0 (A1 \ {0}) ∼= C.
R is the right derived functor.
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