
p-ADIC NUMBERS LECTURE NOTES

VINCENT TRAN

Abstract. I will give an introduction to the p-adic numbers, starting with
their construction and structure and covering some aspects of p-adic analysis
(i.e., padic functions of a p-adic variable). I will discuss some applications,
such as the Skolem-Mahler-Lech theorem about linear recurrence relations.
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1. Lecture 1

Let N ≥ 1 be an integer (later N will be assumed prime).

Observation 1.1. Any x ∈ Z≥0 has a unique N -adic expansion, i.e. we can write

x = xjN
j + · · ·+ x1N + x00

where each xi ∈ {0, 1, . . . , N − 1}.
With N = 10, this is the usual decimal expansion.

Definition 1.2. An N-adic integer is a formal infinite sum
∑∞

i=0 xiN
i with each

xi ∈ {0, . . . , N − 1}.
So each N -adic integer has a unique N -adic expansion.
Analogy: every element of [0, 1] has a decimal expansion (including irrationals).

The differences are that it goes in the opposite direction (bases are growing here)
and are unique (.9 = 1 makes it non-unique in [0, 1]). Then ZN , by definition is the
set of all sequences x0, x1, . . . ∈ {0, 1, . . . , N1}.
Corollary 1.3. The usual rules of addition and multiplication in Z (by carrying
N -adic expansions) make sense for formal infinite N -adic expansions. In this way,
ZN acquires the structure of a commutative ring.

This is nice in that in that the first k-terms are of the N -adic expansion only
depends on the first k-terms. Equivalently, this is addition mod Nk. Similarly, we
can define multiplication like that too. But, we also need to check that we have
additive inverses too.
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Example 1.4. . . . 9999 + . . . 0001 = 0. Hence −1 = . . . 9999.

This is the general pattern for additive inverses in N -adics. I.e. . . . x3x2x1x0

has additive inverse . . . (N −x3− 1)(N −x2− 1)(N −x1− 1)(N −x0). This should
remind you of the fact that .9 = 1 in R.

Example 1.5. Let N = 10. Then . . . 3333× 3 = . . . 9999 = −1. So . . . 3333 = −1
3 .

Question 1.1. Which fractions can we not get?

Example 1.6. Here is an example of something you can’t get: 1
N . This is because

Nx shifts the digits to the left and appending a zero on the rightmost digit, but we
need a 1 on the rightmost for it to equal 1.

Proposition 1.7. Any fraction a
b such that b is coprime to N is represented by

an N -adic integer. In fact, the N -adic expansion is eventually periodic. This is
analogous to what happens in the real numbers.

Example 1.8. 1
1−Nk = 1 +Nk +N2k + · · · .

Hence we get an N -adic expansion for a′/(1 − Nk) for any a′. This lets us
represent a/b if b is coprime to N . This uses the fact that if b is coprime to N ,
there is k such that b|1−Nk.

Remark 1.9. We will focus on the case where N is prime. This is because the
N -adic integers are only an integral domain iff N is prime.

Example 1.10. Z10 isn’t an integral domain. In fact, Z10 = Z5 × Z2.

Here’s an idea: we have a good notion of convergence in ZN .

Definition 1.11. Say that a sequence a1, a2, . . . in ZN converges to a∞ if ∀k, the
first k terms of the N -adic expansion of aI stabilize (for i >> 0) of that of a∞,
which happens iff ai − a∞ is divisible by Nk for i >> 0.

To construct the counter example to Z10’s integral domainness, we construct

some sequences. Consider 5, 52, 54, . . .. This converges 10-adicly.
51 = 5 58 = 390625
52 = 25 516 = 152587890625
54 = 625

The last digits seem to converge, which is due to the sequence converging.

Lemma 1.12. 52
n −52

n−1

is divisible by 10n. I.e. they have the same first n terms
in the decimal expansion.

Proof. It suffices to check that it is divisible by 2n since there are so many powers
of 5. We can do this by induction. Notice that we have this factorization: (52

n−1 −
52

n−2

)(52
n−1

+ 52
n−2

), and the first term is by induction divisible by 2n−1, which
in conjunction with the latter term’s divisiblility by 2 finishes the lemma. □

Notice that with x5 = limk→∞ 52
k

, x2
5 = x5 because squaring it just shifts each

term up one (limk→∞ 52
k+1

= x5). Hence x5(x5 − 1) = 0 but neither terms are
0 by checking the last digit. The square goes through the limit because squaring
is continuous, allowing it to pass through the limit. We can use the concept of
continuity because we have a metric.



p-ADIC NUMBERS LECTURE NOTES 3

1.1. Topology. More systematically, ZN is a metric space because we have the
following metric:

Definition 1.13. Given two x, y ∈ ZN , d(x, y) := p−n where n is the largest N
s.t. Nn|x− y.

Proposition 1.14. The above function is a metric and ZN is complete.

Remark 1.15. The metric space ZN is very unlike [0, 1] in that the latter is
connected, and the former is totally disconnected and is in fact homeomorphic to
the Cantor set. In particular, ZN is uncountable.

From here on, N = p is prime.

Exercise 1.1.1. Zp is an integral domain.

Example 1.16. i ∈ Z5 (with i =
√
−1). Consider the sequence 2, 25, 25

2

, 25
3

. This
converges 5-adically because of the following lemma.

Lemma 1.17. ∀p > 2, Zp contains ζp−1, a primitive p− 1-th root of unity.

Lemma 1.18. With x, y ∈ Zp and x ≡ y (mod pk), then xp ≡ yp (mod pk+1).

So ·p is like a contraction mapping.

Proof.
xp − yp = (x− y)(xp−1 + yxp−2 + · · ·+ yp−2).

The first term is divisible by pk. The other term is a sum of p monomial terms
because x ≡ y (mod p), so they are all congruent mod p, implying that this term
is divisible by p. □

Corollary 1.19. If x ∈ Zp, then the sequence x, xp, xp2

, . . ..

Proof. First note that xp − p is divisible by p by Fermat’s Little Theorem. By the
lemma with y = xp, xpk −xpk−1

is divisible by pk. This is just giving us convergence
in Zp. □

Observation 1.20. With the above converging to α(x), α(x) = α(x′) if x ≡ x′

(mod p) by the lemma.

In our example, we find that 25
k

convergences in Z5. Now how do we show that
this is the square root of −1. Let α be the limit. Then α2 = limk→∞ 45

k

. By the
corollary, this also convergences. As 4 ≡ −1 (mod )5 and 45

k ≡ −1 (mod 5k+1),
lim

k→45k
= −1.

Example 1.21. With p ̸= 2, there are way more square roots.√
1 + p = 1 +

1

2
p+

(
1/2

2

)
p2 +

(
1/2

3

)
p3 + · · · .

The RHS converges because
( 1

2
n

)
∈ Zp. In fact, we can get

√
1 + py∀y ∈ Zp.

Example 1.22. This is from Gouvea’s text.

log(1 + x) = x− x2/2 + x3/3± · · · .
In the reals, the denominators help us. Here, they hurt our convergence. But in
fact, if n|x, then the xn/n will be absorbed and we can get convergence.
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Example 1.23. With p = 2, x = −2,

0 = log(−1) = −
(
2 +

22

2
+

23

3
+ · · ·+ 2n

n
+ · · ·

)
As a consequence, 0 = 2 + 22

2 + · · · .

2. Lecture 2

Definition 2.1. An absolute value on F is a function

| · | : F → R≥0

such that
(1) |x| = 0 ⇐⇒ x = 0
(2) |xy| = |x||y|
(3) |x+ y| ≤ |x|+ |y|

Remark 2.2. The function |·| on F turns F into a metric space via d(x, y) = |x−y|.

Example 2.3. Let F = Q have the usual archimidean absolute value denoted by
| · |∞.

Example 2.4. Let p be a prime. Define the p-adic absolute value | · |P on Q to be
|ab |p = pordp(b)−ordp(a) where ordp(a) is the largest power of p that divides a.

For example, |p|p = 1
p , |

1
p |p = p. It isn’t too hard to show that this is an absolute

value, 2 comes from unique prime factorization, 3 comes from the p-adic absolute
value satisfying the non-archimedean property, i.e. |x + y|p ≤ max(|x|p, |y|p) (be-
cause pm|x, pn|y =⇒ pmin(m,n)|(x + y)). This is stronger than the usual triangle
inequality.

Definition 2.5. Given (F, | · |), say that F is nonarchimedean if it satisfies |x+y| ≤
max(|x|, |y|)∀x, y ∈ F .

Geometrically, this means that a disk of some radius doesn’t determine a unique
center and can be centered at any point in the disk. Also, if |x| ≠ |y|, then |x+y| =
max(|x|, |y|).

Remark 2.6. Any archimedean (not non-archimedean) field (F, | · |) is always a
subfield of C with the usual absolute value up to scaling. As a consequence, we
can’t extend the usual absolute value on C to C(z). However, there are arbitrarily
large nonarchimedean field.

Exercise 2.0.1. It is enough to show that |2| > 1 to show that a field is archimedean.

Something special about the nonarchimedean-ness of the absolute value is that
points being a fixed distance away forms an equivalence relation (noticably transi-
tivity).

Example 2.7. Let F = K(t). Define an absolute value on K and we want to define
| f(t)g(t) |. We do so by letting it equal 2ordt(g)−ordt(f). For example, |t| = 1

2 , |t
−1| =

2, |t − 1| = 1. Similarly to the case of Z, we can define this p-adic valuation.
In general, we can do this for any UFD, and (my personal addition) I think all
valuation rings.

Theorem 2.8 (Ostrowski). Every absolute value on Q is one of:
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(1) trivial (|0| = 0, |x| = 1 otherwise)
(2) | · |αp , α > 0
(3) | · |α∞ with 0 < α ≤ 1

Definition 2.9. Given (F, | · |), call it complete if F is complete as a metric space,
i.e. every cauchy sequence converges.

Observation 2.10. Every pair (F, |·|) has a completion (F̂ , |·|) by letting F̂ be the
completion of F as a metric space, which is still a field because the field operations
carry through limits as F is a topological field.

Definition 2.11. We can define Qp as the completion of Q with respect to the
p-adic absolute value.

Definition 2.12. Given a non-archimedean field (F, | · |), define the valuation
ring O = {x ∈ F ||x| ≤ 1}.

Definition 2.13. Define Zp as the valuation ring of Qp.

Now we want to unify the two definitions.

Proposition 2.14. Any x ∈ Zp can be uniquely expressed as
∑∞

n=0 anp
n with each

an ∈ {0, . . . , p− 1}.

Observation 2.15. (1) In any complete NA field,
∑∞

n=0 an converges iff ai →
0. This is due to the non-archimedean property.

(2) |aipi| ≤ p−i so that aip
i → 0 in Qp.

Proof. For any x ∈ Zp, there is a unique a0 ∈ {0, 1, . . . , p−1} such that |x−a0|i ≤ 1
p .

WLOG, x ∈ Q ∩ Zp = {a
b }. Take x = m

n , (n, p) = 1. Then we can find a0 s.t.
x − a0 = m−na0

n has p-adic absolute value ≤ 1
p . Simply pick a0 s.t. m − na0 is

divisible by p. Then repeat this process. □

Observation 2.16. Given x =
∑∞

n=0 aip
i, what is |x|? |x| = pi with i the minimal

such an ̸= 0.

Observation 2.17. Given x ∈ Qp, ∃N such that pNx ∈ Zp. Hence x =
∑∞

−N aip
i.

Exercise 2.0.2. Take (K(t), | · |t) with the absolute value from before has com-
pletion (K((t)), | · |p) where K((t)) =

∑∞
n=−N ait

i, ai ∈ K, i.e. the Laurant series.
The valuation ring here is K[[t]].

The difference between this and the p-adics is that we don’t have to carry. A
similarity between the p-adics and reals is that Qp is also locally compact. Further,
Zp is compact. It suffices to show that every sequence of Qp has a convergent subse-
quence by finding a subsequence s.t. the first term converges (exists because Z/pZ
is finite) and then use Cantor’s diagonal argument to prove sequential compactness
is equivalent to local.

Remark 2.18. If (F, |·|) is a non-archimedean field, then the valuation ring O ⊆ F
is a local ring, i.e. it has one maximal ideal, namely {x ∈ F : |x| < 1}. This is
because O \ ⇕ = {x ∈ F : |x| = 1} = O× is invertible, as the inverse will also have
absolute value 1.

Example 2.19. The unique maximal ideal of Zp is (p). In fact, all ideals are
generated by powers of p.
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2.1. Hensel’s Lemma. This is a basic tool for solving equations in the p-adics.

Theorem 2.20. Let F be a complete NA field, O ⊆ F its valuation ring. Next let
f(x) ∈ O[x] be a polynomial and let α0 ∈ O such that |f(α0)| < 1 and |f ′(α0)| = 1.
This condition is saying that α0 in the residue field is a simple root (multiplicity
one) of f . Then there exists a unique element α ∈ O such that

(1) |α− α0| < 1
(2) f(α) = 0.

This will reprove everything about roots of a polynomial from the first lecture.

Proof. Construct the root α via Newton’s method. Explicitly, define a sequence
inductively

αi+1 := αi −
f(αi)

f ′(αi)
.

Claim 2.1. The αi converge (rapidly) to a root α of f(x).

Proof.

Lemma 2.21. If g(x) ∈ O[x] and t, h ∈ O, then

|g(t+ h)− g(t)− hg′(t)| ≤ |h|2.

Proof. We use the Taylor expansion for g(t + h) (turns out to be finite). Namely,
we get

∑∞
n=2

g(i)(t)hi

i! Then by the NA property, we get the linear terms there and
quadratic terms, and the quadratic terms dominate. □

To resume the proof of the claim, we let η = |f(α0)| < 1. Our inductive claim is
that for each i, |f ′(αi)| = 1, |f(αi)| ≤ η2

i

, and |αi+1 − αi| ≤ ϵ2
i

.
Notice that parts one and two imply three because f ′(αi) = 1, so αi+1 − αi =

− f(αi)
f ′(αi)

, which has absolute value |f(αi)|. Now assume that one and two are true

up to i. Then the lemma applied to the lemma with t = αi, h = − f(αi)
f ′(αi)

gives us

that |f(αi+1)| ≤ |h|2 ≤ (η2
i

)2 = η2
i+1

. So we have 2.
Finally, for property 1, |αi+1−αi| < 1, so |f ′(αi+1)−f ′(ai)| < 1 =⇒ |f ′(αi+1)| =

1. This completes the induction (property 3 was needed to show convergence). □

This shows the convergence to α. The uniqueness isn’t hard: just consider the
difference between two hypothetical solutions. □

Example 2.22. We compute
√
1 + p ∈ Zp. We can see this via Hensel’s lemma

f(x) = x2 − (1 + p) has root α0 = 1. Then f(α0) = −p, f ′(1) = 2.

Example 2.23. Another example is xp−1 − 1. This is the minimal polynomial of
the (p − 1)-th roots of unity. For any n ∈ Z, if p ∤ n, |f(n)| < 1. Further, the
derivative at n will also not be divisible by p, so we can lift.

3. Lecture 3

Question 3.1. WHen is x ∈ Q×
p a square?
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We have that
Q×/Q×2 ∼= ⊕p primeF2 ⊕ F2

because each element squared is 0 and we have a map

Q×/Q×2 → ⊕p primeF2

via x 7→ vp(x) (mod 2) and the extra F2 is from the sign. Similarly, R×/R×2 ∼= F2.
We hope that the p-adic version is like this too.

We want to use a similar result as in Q×/Q×2, except here we have no sign nor
other primes. So we have that

vp : Q×
p /Q×2

p → F2.

Our first criterion is that the p-adic valuation has to be even. Another obstruction
is from x ∈ Z×

p (i.e. vp(x) = 0). Here x also needs to be a square in Z×
p if it is a

square Q×
p .

Aside: Over R, we have a natural ordering from the squares always being positive.
But over Qp, any element is a sum of 4 squares.

Claim 3.1. For p > 2,
Q×

p /Q×2
p = F2 ⊕ F2.

Proof. It is enough to show that if x ∈ Z×
p is a square mod p, then x is a square.

Consider f(y) = y2 − x. This has a root mod p if x is a square mod p, say α0.
Then to meet the criterion for Hensel’s lemma, we also check that f ′(α0) = 2α0 is
a unit, which checks out because 2α0 ∈ Z×

p because p ̸= 2. □

Proposition 3.1. Q×
2 /Q

×2
2

∼= F2 ⊕ F2 ⊕ F2. Moreover, anything in Z×
2 that is

congruent 1 mod 8 is a square in Z2.

Proof. The first factor records the 2-adic valuation. Then because Z×
2 → (Z/8Z)× =

{1, 3, 5, 7} = F2 ⊕ F2. Now all we need to check is that if x ∈ Z2 is such that x ≡ 1
(mod 8), then x is a square. We want to use Hensels, but the derivative will create
issues.

We change variables: let y = 1+2z, y2 = x. Then we have 4z2 +4z+1 = x and
z2 + z = x−1

4 ≡ 0 (mod 2). Then f(z) = z2 + z + x−1
4 . Here, f ′(α0) = 2α0 + 1,

showing that Hensel’s lemma applies. □

In some cases, one can hope to solve an equation over Q by solving over Qp,R.
We can see this with the rationals. The decomposition into a direct sum shows that
a rational over Q is a square iff it is a square in Qp,R for all p.

Theorem 3.2 (Hasse-Minkowski). A quadratic form over Q (i.e. of the form∑
aijxixj with variables xi) has a non-trivial root iff it has a non-trivial zero in

each Qp,R.

Remark 3.3. The analogue fails for higher degree polynomials.

Example 3.4. x4 − 17 = 2y2 has solutions over Qp,R but not over Q.

Question 3.2. Let G ⊆ GLn(Q) be a finite subgroup. How large can G be?

Example 3.5. The signed permutation matrices have 2n · n!. This is the best
possible in most cases.

We have a bound for the size, but also the order.



8 VINCENT TRAN

Theorem 3.6 (Minkowski).

vℓ(|G|) ≤
⌊

n

ℓ− 1

⌋
+

⌊
n

ℓ(ℓ− 2)

⌋
+

⌊
n

ℓ2(ℓ− 1)

⌋
+ · · · .

This gives us a bound on |G| because there are a finite number of primes and these
terms eventually die.

Proposition 3.7. With p > 2, let A ∈ GLn(Zp) such that A ≡ 1 (mod p). Then
A has infinite order if A ̸= 1.

Proof. Suppose FTSOC that we have a counter-example matrix A with finite order.
WLOG, we may assume that the order of A is prime, say ℓ. Let M be the matrix
A − 1, which by assumption doesn’t equal 0. But (1 + M)ℓ = 1. Expanding this
out, we get

1 + ℓM +

(
ℓ

2

)
M2 + · · ·+M ℓ = 1 ⇐⇒ ℓM + · · ·+M ℓ = 0. (3.8)

Finally, to get a contradiction, we can realize that if B is any matrix (bij),
then define |B| = max(|Bij |). Next observe that |BB′| ≤ |B| · |B′| (by the non-
Archmedean property). Then Equation (3.8) gives us that ℓM =

∑ℓ
j=2

(
ℓ
j

)
M j .

Suppose that |M | = η < 1. If ℓ ̸= p, then |ℓM | = η, but the RHS has absolute
value ≤ η2.

If ℓ = p, then the LHS has absolute value |pM | = 1
p |M |. Then the RHS is(

p
2

)
M2 +

(
p
3

)
M3 + · · ·+Mp, which is at most either 1

p |M
2| or |Mp|. Because p > 2,

|Mp| ≤ |M | · |M |2 ≤ 1
p2 |M |. □

There’s a similar proof using Lie algebras.

Corollary 3.9. With p > 2 a prime and G ⊆ GLn(Zp) is finite, then

G ↣ GLn(Fp).

So |G| | |GLn(Fp)|.

Proposition 3.10. |GLn(Fp)| = (pn − 1)(pn − p) · · · (pn − pn−1).

Proof. It suffices to pick n linearly independent vectors over Fp because we just
need to send the canonical basis to another basis as this is what invertible matrices
do. □

Proof of Minkowski’s Theorem. Let G ⊆ GLn(Q) be finite.

Observation 3.11. G preserves a lattice Λ in Qn (pick any Λ0 and then define∑
g∈G gΛ0). We have that G has a conjugate in GLn(Z). WLOG let G ⊆ GLn(Z).

The corollary implies that vℓ(|G|) ≤ vℓ(|GLn(Fp)|). Now choose p that minimizes
the RHS.

Given ℓ, we want p to minimize
∑n−1

i=0 vℓ(p
n − pi). Claim is that it gives the

RHS.
In fact, with p ̸= ℓ, this is just

n∑
j=1

vℓ(p
j − 1).

We want to choose p that minimizes this.
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For j such that ℓ−1|j, by Fermat’s Little Theorem we get an unavoidable factor
of ℓ. In fact, we want to pick p such that p is a primitive root mod ℓ so that
vℓ(p

j − 1) > 0 ⇐⇒ ℓ− 1|j. But also, we want vℓ(p
ℓ−1 − 1) = 1 on the nose.

In order to do this, now that (Z/ℓ2Z)× = Z/ℓ(ℓ − 1)Z, which is a well-known
result in number theory. Here, p needs to be a generator of this group so that the
order of p in (Z/ℓ2Z)× is ℓ(ℓ − 1). This means that vℓ(p

j − 1) = 0 when ℓ − 1 ∤ j
and v(j) + 1 when ℓ− 1|j. This gives us the desired bound.

The justification for the existence of the prime number p is via the cyclicity of
(Z/ℓ2Z)× and Dirichlet’s Theorem.

□

Remark 3.12. Some computations:

vℓ(n!) =
⌊n
ℓ

⌋
+

⌊ n

ℓ2

⌋
+ · · · .

Z×
ℓ
∼= µℓ−1 × Zℓ

with ℓ > 2 and µℓ−1 is the ℓ− 1-th root of unity. The Zℓ term is like the units ≡ 1
(mod ℓ). A proof of this can be seen in Serre’s A Course in Arithmetic.

Definition 3.13. The exponential and logarithm functions

exp(x) =

∞∑
n=0

xn

n!
log(1 + x) = x− x2

2
+

x3

3
+ · · · .

We can try and consider these are functions of a p-adic variable, since we have
ideas of convergence. But we have issues of convergence. The n! can cause problems
in the p-adics.

Proposition 3.14. exp(x) converges when |x| < p−
1

p−1 . This defines a continuous
function in that neighborhood, and exp(x+ y) = exp(x) exp(y).

Further, this is just a disk of radius 1
p for p > 2 or 1

4 for p = 2.

Proof. We need that xn

n! → 0. We have that |xn| = |x|n. To do this, we note that
vp(n!) ≤ n

p−1 . So | 1n! | ≤ p
n

p−1 . Thus |x
n

n! | ≤ |x|n · p
n

p−1 , which is the exact condition
we need. □

Proposition 3.15. log(1+x) convergences if |x| < 1. Further, log((1+x)(1+y)) =
log(1 + x) + log(1 + y). Then

|x
n

n
| ≤ |x|n · n → 0 ⇐ |x| < 1.

Proposition 3.16. log and exp are inverse where defined.

Notice that the second part of the computations earlier in a remark is that we
have an isomorphism (1 + ℓZℓ)

× ∼= ℓZℓ via log and vice versa via exp.

4. Lecture 4 - Linear Recurrences

Definition 4.1. Let x0, x1, . . . be a sequence in a field F . Say that the sequence
has a linear recurrence if ∃d > 0 and a1, . . . , ad ∈ F such that ∀n ≥ d, xn =
a1xn−1 + · · ·+ adxn−d.

Example 4.2. The Fibonacci sequence is a famous example: begins with 0, 1 and
xn = xn−1 + xn−2.
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Question 4.1. Given a linear recurrence, what do its zeros look like?

The decidability of this is an open problem.

Theorem 4.3 (Skolem-Mahler-Lech). If char(F ) = 0, the set {n : xn = 0} is a
union of a finite set and finitely many arithmetic progressions.

Proposition 4.4. Given p(x) ∈ F [x], {p(n)}n is a linear recurrence.

Example 4.5. A criterion for linear recurrence: The generating function∑
n≥0

xnt
n ∈ F [[t]]

is rational iff xn is a linear recurrence. Namely, the linear recurrence gives us a
polynomial p(t) such that p(t)· generating function has finitely many roots 1−a1t−
a2t

2 − · · · − adt
d.

Example 4.6. We have 1
1−t =

∑
n≥0 t

n, the k-th derivative is rational:
∑

n≥0 n(n−
1) · · · (n− (k − 1))tn−k. So {n, n− 1, . . . , (n− (k − 1))}n is a linear recurrence.

Example 4.7. Let α ∈ F . Then αn is a linear recurrence.

Example 4.8. If {xn} is a linear recurrence, then {αnxn} is a linear recurrence.

Example 4.9. We have that {αnp(n)} is a linear recurrence (building off the earlier
proposition).

Remark 4.10. Over an algebraically closed field, all linear recurrences are linear
combinations of {αnp(n)}. I.e. we can write the generating function as a sum of

f(x)
(1−xα)n .

Observation 4.11. A sum of linear recurrences is a linear recurrence.

Theorem 4.3 is not true in characteristic p because of

Example 4.12. (in Fp(t)), we have the sequence xn = (1 + t)n − tn − 1. This is a
polynomial, so there is a linear recurrence. But the zeros of this are n = powers of
p.

If n is a power of p, this is easily seen to be true. But for odd p, if n ̸= p, then(
2p
p

)
̸≡ 0 (mod p). So (1 + t)2t ̸= 1 + t2p.

The outline of the proof of Theorem 4.3 is to get a sequence in the p-adics, show
that it is analytic, and finally show that analytic functions have no zeros or finitely
many.

4.1. Analytic Functions. Let F be a complete, NA field, e.g. F = Qp. Consider a
formal power series

∑∞
i=0 aix

i ∈ F [[x]]. Suppose we have r > 0 such that |ai|ri → 0
as i → ∞. Then f(x) defines a function on {x ∈ F ||x| ≤ r}. Such functions are
called analytic. Note that this “closed disk” is also open.

Example 4.13.
∞∑

n=0

xn

n!
r < p−

1
p−1

∞∑
n=1

(−1)n+1x
n

n
r < 1.
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We use this with r = 1 for simplicity, so any ai → 0 in Qp defines an analytic
function on Zp.

Theorem 4.14 (Mahler). Any continuous function f : Zp → Qp is uniquely ex-
pressed as

∞∑
n=0

an

(
x

n

)
where an ∈ Qp converge to 0.

Recall that over C, analytic functions have isolated zeros.

Theorem 4.15 (Strassmann). Let
∑

aix
i be an analytic function on Zp (so ai ∈

Qp converge to 0).

Proof. Choose N such that |ai| ≤ |aN |∀i and |ai| < |aN |, i > N . Then f has ≤ N
roots.

We do induction on N = N(f). If N = 0, then |ai| < |a0| for i > 0. Then

|
∞∑
i=0

aix
i| = |a0| ≠ 0 =⇒ no roots in Zp.

Suppose that N > 0, and suppose that α ∈ Zp is a root of f . Then

f(α) =
∑

aiα
i = 0

and f(x) = f(x)− f(α) =
∑∞

i=0 ai(x
i−αi) = (x−α)g(x). Then the fact that g(x)

is analytic on Zp follows from:

Claim 4.1. N(f) = N(x− α) +N(g).

The former term is 1, so

N(f1f2) = N(f1) +N(f2).

This implies the theorem because by induction, g has at most N(g) = N(f) − 1
roots in Zp.

Proof of Claim. This is basically Gauss’ Lemma: WLOG we can assume that f1, f2
is in Zp[[x]] \ pZp[[x]]. Then N(f1) = deg f1 and deg(f1f2) = deg f1 + f2. □

Now suppose we have x0, x1, · · · a linear recurrence with xn = a1xn−1 + · · · +
adxn−d. WLOG, assume ad ̸= 0.

Observation 4.16. There is a linear operator on the sequence y1, · · · , yd such that

A(xn−1, . . . , xn−d) = (xn, · · · , xn−d−1).

So xn = wAnv, where v captures the initial condition. The idea is that we can
interpolate this to a p-adic analytic function. First choose odd p >> 0 such that
A ∈ GLn(Zp) and M > 0 such that AM ≡ 0 (mod p).

Claim 4.2. The sequence {Aa+bM}b extends to a p-adic analytic function in b ∈ Zp.
As such, the sequence {xa+bM} : N → Q extends uniquely to an analyic function
Zp → Qp. As a result, it’s either identitally 0, or has finitely many zeros.

Proof.

Proposition 4.17. Let p > 2 and let B ∈ GLn(Zp) such that B ≡ 1 (mod p).
Then m 7→ Bm extends to a p-adic analytic function.
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Proof. Notice that Bm = (1 + (B − 1))m =
∑∞

i=0

(
m
i

)
(B − 1)i. We want to show

that this extends to an analytic function of m ∈ Zp. We use this formula as the
extended function in Zp. But we still need to show that it is analytic. This function
will be

f(x) = lim
N→∞

N∑
i=0

(
m

i

)
(B − 1)i.

In order for this to converge to an analytic function, it needs to converge in Gauss
norm (max of norm of coefficients).

I.e. we need
(
x
i

)
(B − 1)i → 0. The Gauss norm is at most | 1i! | · |B − 1|i. But

| 1i! | ≤ p
i

p−1 . Because B − 1 ≡ 0 (mod p), |(B − 1)i| ≤ p−i. Hence the Gauss norm
goes to 0, showing that it is analytic. □

□

□

Remark 4.18. We can see that Bm = exp(m logB). Interpolate this to x 7→
exp(x · logB). Because B ≡ 1 (mod p), logB converges for odd p. Recall that exp

is defined on input of size < p−
1

p−1 . But for p = 2, we need B to be equivalent to
1 mod 4.

Example 4.19. Consider f(x) = 0 a function Zp → Zp if p|x and 1 if p ∤ x. Here
this has infinitely many zeros, but isn’t analytic.

Theorem 4.20. If K is any finitely generated field of characteristic 0 and S ⊆ K×

is finite, then ∃p such that K ↪−→ Qp such that S ↪−→ Z×
p .

Given a linear recurrence sequence of the form wAnv over K, we can embed
K ↪−→ Qp such that A maps into GLn(Zp).

For a reference, see Cassels, Local Fields. A useful blog post is by Terry Tao.
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