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1.1. Symmetry Groups. Representations come in many flavours, and the most
important ones are representations of groups—a mathematical object that captures
the symmetry of some structure. A bit more formally is that we want some way of
acting on itself that is invertible, i.e. “automorphisms”. We would also want them
to be able to put together via composition.

Formally, a group is

Definition 1.1. A set G with a function G × G → G that is our multiplication
operation s.t.

(1) there is an identity element e such that (e, g) 7→ e for all elements g ∈ G
(2) associativity, i.e. a(bc) = (ab)c
(3) inverse, i.e. ∀g ∈ G, ∃g−1 s.t. (g, g−1) 7→ e.

Example 1.2. X = a square. Then we have the symmetry of a square being the
set of 4 rotations and 4 reflections and the operation of doing them one after the
other. This is called D8, the dihedral group of order 8 (order of a group is the
group size).

Let r = the rotation through π
2 counter clock wise and s the reflection over the x-

axis. Knowing these two operations allow us to generateD8: D8 = {e, r, r2, r3, rs, r2s, r3s}.
A word of caution: we read the actions right to left, like functions.

We have some relations with r, s, namely r4 = e, s2 = e, sr = r3s.

Example 1.3. Let X = Cn, the n-dimensional complex vector space. It turns out
that {invertible linear transformations Cn → Cn} ∼= GLn(C) (n×n matrices with
coefficients in C) with the isomorphism being one that respects the extra structure
of composition and multiplication, i.e. composing linear transformations on the left
correspond to multiplication of the matrices on the right.

Easiest groups to understand are commutative groups, i.e. abelian groups. Gen-
erally though, matrices aren’t commutative. But with n = 1, GL1(C) = C× =
(C \ {0}, ·) in which it is commutative.
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In a general group, x, y ∈ G are conjugate if ∃g ∈ G s.t. gxg−1 = y. We can
fairly easily see that conjugacy is an equivalence relation. This captures some idea
of the failure of G to be abelian. For example, if G is abelian, then gxg−1 = x, so
all conjugates are trivial. So the only conjugacy class of x ∈ G is {x}.

Definition 1.4. The set of x s.t. ∀g ∈ G, xg = gx (which is the same as the
conjugacy class of x is {x}) is the center. Denote this set as Z(G).

Example 1.5 (The conjugacy classes in D8). Basic fact: If G is finite and C ⊆ G is
a conjugacy class, then #C|#G. As r2 is in the center and r3 isn’t, Z(D8) = {e, r2}.

The remaining conjugacy classes are {r, r3}, {s, r2s}, {rs, r3s} . This can be
summarized by the class equation of D8: 8 =

∑
#C (sum of sizes of all conjugacy

classes) as 8 = 1 + 1 + 2 + 2 + 2.

Theorem 1.6. Two matrices in GLn(C) are conjugate iff they have the same
Jordan normal form.

Example 1.7. Any matrix in GL2(C) is conjugate to one of the following:(
λ 0
0 λ

)
,

(
λ 0
0 µ

)
,

(
λ 1
0 λ

)
.

They are called scalar/central, regular semisimple, and non-semisimple matrices
respectively.

The only redundancy in the above list is(
0 1
1 0

)(
λ 0
0 µ

)
,

(
0 1
1 0

)−1

=

(
µ 0
0 λ

)
.

A is conjugate to central or regular semisimple iff C2 has a basis consisting of
eigenvectors for A.
A is conjugate to (ii) iff A has two distinct eigenvalues.

1.2. Representations of Finite Groups. What is a representation? The goal is
to represent algebraic structures as matrices, passing algebra to linear algebra.

Definition 1.8. An n-dimension representation of G is a map

π : G→ GLn(C)

satisfying
π(xy) = π(x)π(y).

I.e. π is a group homomorphism, and in general homomorphism refers to a function
that respectives the algebraic object’s structure, which here is the group multipli-
cation.

Example 1.9. π : D8 → GL2(C). Once we determine where to send r, s, then we

have determined all of D8 since they generate it. Then π(r) =

(
0 −1
1 0

)
, π(s) =(

1 0
0 −1

)
.

Exercise 1.2.1. This is a well-defined homomorphism, i.e. it also has the needed
relations of r, s.
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Definition 1.10. Two n-dimensional vector spaces representations π1, π2 are called
isomorphic (or conjugate) if there is a map A ∈ GLn(C) s.t.

A−1π1(g)A = π2(g)∀g ∈ G.

A well-studied problem is to classify all representations of a fixed group G up to
isomorphism. A useful tool to control the size of the dimension is through the fact
that we have “factorizations” of representations.

Definition 1.11. A subrepresentation of π : G→ GLn(C) is a vector subspace
V ∈ Cn s.t. π is a representation of V , i.e. π(g)(v) ∈ V ∀v ∈ V,∀g ∈ G.

Note: the hard part is often showing that it is closed under π(g).
Note 2: if we define GLn(C) as the set of matrices, then we would need to

specify a basis. This is where the utility of thinking of GLn(C) as the set of
invertible transformations comes in.z

Definition 1.12. A n ̸= 0 dimensional representation π is irreducible if the only
subrepresentations of π are {0} and Cn.

These form sort of our prime numbers of representations.

2. 6/18 - Representation Theory of Finite Groups Continued

We now discuss the simplest way to put together two representations into a larger
one. Say we have two representations π1 : G→ GLm(C), π2 : G→ GLn(C). Then
we have a representation π1 ⊕ π2 which is m+ n dimensional given by

π1 ⊕ π2(g) =

(
π1(g) 0
0 π2(g)

)
.

A more complicated way of putting them together would be if we had some terms
in the anti-diagonal instead of 0.

Theorem 2.1 (Maschke). Any representation of a finite group of a vector space
over C is isomorphic to a direct sum of irreducible representations.

Remark 2.2. The decomposition above are uniquely determined (including mul-
tiplicities) up to isomorphism.

Example 2.3. π : D8 → GL2(C) via mapping r 7→
(
0 −1
1 0

)
and s 7→

(
1 0
0 −1

)
.

This is irreducible.
To show this, it suffices to show that there is no 1-dimensional subrepresentation

in C2. The eigenspaces for π(s) is C · (1, 0),C · (0, 1) but the eigenvectors of π(r)
doesn’t have any eigenvectors in R2.

Theorem 2.4 (A). Let G be a finite group. The number of isomorphism classes
of irreducible representations equals the number of conjugacy classes in G.

Corollary 2.5. If G is abelian, the number of irreducible representations is the
number of elements of G.

Theorem 2.6 (B). Say G has r irreducible representations up to isomorphism of
dimension n1, . . . , nr. Then #G = n21 + n22 + · · ·+ n2r.
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Corollary 2.7. The two above theorems combine to imply that all irreducible rep-
resentations of G are one dimensional. Thus in abelian groups, representations can
be simultaneous diagonalized. This is like the linear algebra theorem that commuting
semisimple matrices can be simultaneously diagonalized.

Theorem 2.8 (C). If G has an irreducible n-dimensional representation, then
n|#G.

Example 2.9. ψ1 : D8 → C× by sending g 7→ 1 which is called the trivial repre-
sentation.

We also have
• ψ2 : D8 → C×, r 7→ 1, s 7→ −1
• ψ3 : D8 → C×, r 7→ −1, s 7→ 1
• ψ4 : D8 7→ C×, r 7→ −1, s 7→ −1

Previously, we have seen that Z(D8) = {e, r2}. This is normal. So G/Z(D8) ∼=
⟨r⟩ × ⟨s⟩ where the bar indicates the image after reduction and the langles are the
group generated by it. By the commuting relation sr = r3s, we can see that this is
the Klein four group.

Hence the matrices that send G/Z(D8) to C× are just ψi.
We also have the commutator, [G,G] = {subgroup generated by xyx−1y−1, x, y ∈ G},

which is normal. The abelianization of G is G/[G,G]. This is the biggest possible
abelian quotient.

By coincidence, [D8, D8] = Z(D8), so Dab = D8/Z(D8). This tells us how
to write the 1-dimensional representations because the one-dimensional represen-
tations of G biject to 1-dimensional representations of its abelianization. Hence
#{1-dimensional representations of G} = #Gab.

Further, this shows that π : D8 → GL2(C) is irreducible. D8 has 5 conju-
gacy classes, so by Theorem A, any irreducible D8 representations is isomorphic to
ψ1, ψ2, ψ3, ψ4, π.

We can verify that Theorem B,C hold: 8 = 1 + 1 + 1 + 4 and 1|8, 2|8.

Exercise 2.0.1. Do the classification problem for S3, the symmetric group on 3
letters. Also do the quaternions.

2.1. Character Theory. Characters provide a powerful tool to study representa-
tions. They allow us to reformulate representations as functions and also gives us
invariants of a group.

Recall that the trace of an n × n matrix A = (aij) is tr(A) =
∑
aii. A crucial

property of the trace is that tr(AB) = tr(BA). It follows that if B is invertible,
then tr(BAB−1) = tr(A).

Definition 2.10. A character of a representation π : G→ GLn(C) is a function
on χπ : G→ C given by

χπ(g) := tr(π(g))

.

We have
χπ(hgh

−1) = χπ(g)∀g, h ∈ G.

Definition 2.11. Hence χπ ∈ Cl(G), the set of functions invariant under conjuga-
tion, i.e. f(hgh−1) = f(g)∀g, h ∈ G.
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Theorem 2.12 (A’). For G finite,

{χπ|π is an irreducible representation of G}
form a basis of Cl(G).

Corollary 2.13. If two representations χπ1
= χπ2 have the same character (as

functions), π1 ∼= π2.

Corollary 2.14. Theorem A is a corollary of Theorem A′! For any conjugacy
class C ⊆ G, define fC(g) := 1 if g ∈ C, 0 otherwise. The set {fC(g)|C ⊆
G is a conjugacy class} form a basis of Cl(G). Hence by vector space dimension
theory, the size of the above set which is the number of conjugacy classes equals
the number of bases in Theorem A′, which is the number of isomorphic irreducible
representations.

Definition 2.15. The character table of G lists the values of χπ for all irreducible
representations π.

Example 2.16. Character Table of D8.
e r r2 s rs

ψ1 1 1 1 1 1
ψ2 1 1 1 -1 -1
ψ3 1 -1 1 1 -1
ψ4 1 -1 1 -1 1
π 2 0 -2 0 0

Unfortunately, subgroup and normal subgroup structure are subtle things that
representation theory doesn’t capture super well.

Example 2.17. Character Table of A5, the permutation group on A5 that are
even. We have that #A5 = 60 and it is the smallest nonabelian simple group.

e (12)(34) (123) (12345) (12354)
1 1 1 1 1
4 0 1 -1 -1
5 1 -1 0 0
3 -1 0 1+

√
5

2
1−

√
5

2

3 -1 0 1−
√
5

2
1+

√
5

2
A simple group has a trivial abelianization, so there is only one 1-dimensional

representation.
The first two rows come from reducing the regular representation of A5 (there

is a natural representation of A5 on C5), namely the four dimensional is from
representing the space with coordinates summing to 0. It turns out that these first
two rows give us the rest of the table.
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