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Abstract. I will explain the Riemann Roch theorem, a very important the-
orem connecting geometry and algebra in a more hand wavy way, and then
explain how it appears for graphs through the chip firing game. This will be
elementary, open to anyone.
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1. Riemann Roch Explained

In algebraic geometry, one often wants to study the algebra of sufficiently nice
functions (often polynomials) in order to understand the geometry. A classic ex-
ample is to detect multiplicities: the set of complex roots to x2 = 0 and x = 0 (on
a line) geometrically “look” the same yet algebraically they can be distinguished.
Namely, the former has its functions on it being polynomials in C[x]/x2 while the
latter has its functions being polynomials in C[x]/x. The x2 = 0 is sort of “fat-
ter” than x = 0: its algebra contains the polynomial x, which it analogous to an
infinitesimal around 0.

So one might naturally want to try and control the algebra of polynomials on
a space with a certain set of roots and poles of a certain multiplicity, such as by
trying to bound the dimension. To capture this requirement of a certain set of roots
and poles of a certain multiplicity, let

D =
∑

anzn

where an is the multiplicity (positive being multiplicity of root, negative being
multiplicity of a pole) at zn. Let ℓ(D) be the dimension of rational polynomials
satisfying at least D (i.e. poles are no worse) and degD to be the sum of an. Now
we can state a bound

Theorem 1.1 (Riemann-Roch Inequality). On a non-singular complex curve of
genus g:

ℓ(D) ≥ degD − g + 1.

There is also a version of this for compact Riemann surfaces, which is essentially
the same as above except with meromorphic functions instead of rational. It turns
out that there is a similar result to the above, but for graphs.
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2. Riemann-Roch on Graphs

Let G be a graph and suppose it has weights f ∈ M(G). Let V (G) be the set
of vertices of a graph G and Ev the set of vertices adjacent to v ∈ V (G). Then
consider the following one player game:

(1) Goal: get all weights to be non-negative
(2) Moves: Fix a vertex.

(a) Borrow: subtract one from each neighboring vertex and add that
amount to the vertex

(b) Loan: add one to each neighbor, subtract that amount from the vertex
In this way, the total amount of “money” in the game stays constant. For example

with the top vertex doing a borrow:

Figure 1. Taken from [2]

The moves in this game are sort of like flows, and so naturally the Laplacian is
useful here. Like the Laplacian in finite heat flow, we have that for f ∈ M(G),

∆(f) =
∑

v∈V (G)

∑
w∈Ev

(f(v)− f(w)).

There are many analogues of terms from algebraic geometry for graphs. For
those who know formally about the standard Riemann-Roch, we have

AlgGeo Graphs

Divisors Formal Sum of Vertices (i.e.
∑

anvn with
an integers, vn vertex)

Degree
∑

an
Effective Divisor an ≥ 0 for all n
Partial Ordering on Divisors D ≥ D′ iff an ≥ a′n for all n
Section of Structure Sheaf M(G) := Hom(V (G),Z) (functions on

vertices)
Prin(G) ∆(M(G))
Linear Equivalence D ∼ D′ D −D′ ∈ Prin(G)
Div0(G) Divisors D such that degD = 0
Jac(G) Div0(G)/Prin(G)
Linear System |D| Set of effective divisors D′ ∼ D
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For those who don’t, take the above as definitions for the graph versions.
The terminology above helps us in that it turns out that two weights on a graph

can be reached by moves in the game if and only if they are linearly equivalent as
divisors. Then the winning state in this language is just that D is linearly equivalent
to an effective divisor.

The analogue of dimension in this context will be as follows:

Definition 2.1. Let r(D) for a divisor D be −1 if |D| = ∅ and the largest s ≥ 0
such that |D − Es| ≠ ∅ for all effective divisors Es of degree s.

Warning 2.2. This r differs a bit from ℓ, and is merely an analogue as evident
from the definition. For details see Baker’s paper.

Theorem 2.3 (Riemann-Roch Inequality on Graphs). Let g = |E(G)|−|V (G)|+1.
For any divisor D on a graph G,

r(D) ≥ degD + 1− g.

For those of y’all wondering if the inequality is strict, we have

Theorem 2.4 (Riemann-Roch Equality). Under the same setting of the Riemann-
Roch Inequality,

ℓ(D)− ℓ(K −D) = degD − g + 1

with K being the canonical divisor (too complicated to develop here)

with the analogue being

Theorem 2.5 (Riemann-Roch Equality on Graphs). Under the same setting of the
Riemann-Roch Inequality on Graphs,

r(D)− r(K −D) = degD − g + 1.

Here, on graphs, this mysterious K is more concrete.

Definition 2.6. The canonical divisor of a graph is

K :=
∑

v∈V (G)

(deg(v)− 2)(v)

with deg(v) being the number of neighbors of v.

3. Other Analogues

Another cool analogue is that with the bilinear form

⟨f,D⟩ :=
∑

v∈V (G)

f(v)D(v),

the Lapacian of a graph is self-adjoint. This is a graph theoretic analogue of Weil
reciprocity theorem on a Riemann surface. See Baker’s paper for more details.

One can also prove the Kirchhoff Matrix Tree Theorem. See [2] for a reference
and other results.



4 VINCENT TRAN

References

[1] Matthew Baker and Serguei Norine. “Riemann-Roch and Abel-Jacobi theory
on a finite graph”. In: (2007). arXiv: math/0608360 [math.CO]. url: https:
//arxiv.org/abs/math/0608360.

[2] Riemann-Roch for Graphs and Applications. [Online; accessed 2. Aug. 2024].
Feb. 2014. url: https://mattbaker.blog/2013/10/18/riemann-roch-for-
graphs-and-applications.

https://arxiv.org/abs/math/0608360
https://arxiv.org/abs/math/0608360
https://arxiv.org/abs/math/0608360
https://mattbaker.blog/2013/10/18/riemann-roch-for-graphs-and-applications
https://mattbaker.blog/2013/10/18/riemann-roch-for-graphs-and-applications

	1. Riemann Roch Explained
	2. Riemann-Roch on Graphs
	3. Other Analogues
	References

