THE ENIGMATIC Z/12Z

VINCENT TRAN

ABsTRACT. This paper will introduce a new conception of a topology that
abstracts enough from a normal topology to allow for cohomology theories. We
then define what a family of elliptic curves is, and then define the families of
ellipitic curves of interest, the modular families. Finally, we will then formally
construct the moduli space of (modular) families of elliptic curves, from where
we will compute the Picard group of the moduli space of families of elliptic
curves (and find that it is isomorphic to Z/12Z!).
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1. A NEw CONCEPTION OF TOPOLOGY

The Weil conjectures state that the number of solutions to a system of polyno-
mials! over F,» is a sum of geometric series in n. Grothendieck noticed that the
formulas predicted by the Weil conjectures could be proven with a good cohomol-
ogy theory on varieties, namely via the Lefschetz fixed point theorem (since Fn
points are fixed points of the Gal(F, : F,») action). But the classic topologies
we knew of on varieties (such as the Zariski, fpqc, flat, etc.) failed to capture the
“absolute” cohomology theory given by considering the variety as a complex mani-
fold. Famously, Serre once constructed an example in which the cohomology with
the Zariski topology of two conjugate curves [Ser03] were different. But conjugate
curves must have the same cohomology over C! Hence the classical topologies are
not good enough!

This motivated Grothendieck to invent a new idea of a “space” in the hopes
that it can express the “absolute” cohomology theory algebraically. In particular,
he wanted to generalize Cech cohomology. He saw that in order to define Cech
cohomology, we need intersections and the idea of a cover to be in a topology. He
then isolated three key axioms for a cover:

(a) the identity automorphism is a cover

1Assuming the system is decent in that the variety they form is smooth
1
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(b) coverings are transitive
(¢) coverings can be intersected with a fixed open set to form a cover.

As is typical in the Grothendieck style of algebraic geometry, we can try trans-
lating these into a categorical language to hope to create a “rising sea” 2. We can
try “categorizing” a topological space X by letting the objects be open sets and
morphisms be inclusions. Then intersections correspond to the category having
fibred products and having covers corresponds to having a set of morphisms with
a fixed target obeying three axioms:

(a) If ¢ : U 2V, then {U 2, V}is a cover.

(b) If{Vi; — U;} is a cover of U; and {U; — U} is a cover of U, then {V;; — U}
is also a cover of U. This property corresponds to transitivity of covers.

(c) If {U; = U} is a cover of U, then for all open V,

{V XU UZ—)V}

is a cover of V. This property is the analogue of intersecting with a fixed
open set.

Thus

Definition 1.1. A Grothendieck topology is a category with fibred products
and a collection of sets of morphisms with a fixed target, {U, — U} that has the
above three properties:

The objects are then called open sets and the collection of sets is the collection
of covers.

From now on we call a Grothendieck topology just a topology.

Remark 1.2. Using this language, one is able to prove a correspondence between
sheaves of abelian groups and m modules when 7 is a group acting freely and
discontinuously on a simply connected space. See [Mum65, pp. 39-41].

Just like with a space, there is a nature idea of a continuous map, via preimages:

Definition 1.3. A continuous map of topologies F' : T} — T5 is a functor from
the open sets of Ty to T3 such that

(a) F takes final objects to final objects
(b) F takes fibre products to fibre products
(c) F takes covers to covers

By tradition, we denote the open set in T} associated to U € Ty by F~1(U).
Critically, we have an idea of a sheaf on a topology:

Definition 1.4. A sheaf (with values in a category C) § on a topology T is a
contravariant functor T — € such that for all covers {U, — U}, the following is an
equalizer

FU) = [[8Ua) = [[3Wa xu Up).
A morphism of sheaves is a natural transformation of the functors between
two sheaves.

2Grothendieck famously said of his problem solving philosophy, “The unknown thing to be
known appeared to me as some stretch of earth or hard marl, resisting penetration... the sea
advances insensibly in silence, nothing seems to happen, nothing moves, the water is so far off you
hardly hear it.. yet it finally surrounds the resistant substance.”
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As we have continuous maps and sheaves, we have pullback sheaves via F.§(U) =
S(F~Y(U)). With a theory of sheaves comes a theory of cohomology via the de-
rived functor perspective: suppose T has a final object X (in a classical topology
turned into a Grothendieck topology, this would be the entire space). Then we can
define global sections via I'(F) = §(X), allowing us to consider injective or flabby
resolutions of § and applying the global section functor to them. So we have higher
cohomology H(T,F).

For simplicity, henceforth all schemes are separated schemes of finite type over
an algebraically closed field k.

Example 1.5 (Zariski Topology). Let X z,, be the Grothendieck topology associ-
ated to the Zariski topology.

Definition 1.6. A morphism f: X — Y is étale if for all points y € Y, f~1(y)
is finite and for all z € f~*(y), the map f* : oy,y — 0x,, induces an isomorphism
f* : 6y7y — 6X,x.

Proposition 1.7. A morphism being étale is also equivalent to

(a) [ being flat
(b) having scheme theoretic fiber f~1(y) being reduced finite set

(C) Vo e f_l(y)7 Mg = f*(my) "0X,x-
Proof. See [Mill3, Proposition 2.9]. O

The intuition for étale morphisms is that it is the algebraic version of being a
local homeomorphism.

Example 1.8 (Etale Topology). Define X to be the topology with open sets étale
maps U — X and a morphism of p: U — X and ¢ : V — X to be a morphism of
schemes U — V over X. Then define {U, £% U} to be a cover if U = Upy (Uy ).

Using this topology, Artin and Mazur was able to prove that there is an iso-
morphism H*(Xg,Z/n) — H'(Xc,Z/n) when X is nonsingular and X¢g is X
considered as a complex manifold [Art69]! Thus the analytic object on the right
was related to the algebraic object on the left!

Here are some examples of other topologies on X:

Definition 1.9. The topology X has as open sets arbitrary morphisms

(smooth,étale)
U — X and morphisms of open sets commutative diagrams

U\7>V

Finally, {U, ELN U} is a cover if U = Uf,(U,) and each f, is (smooth,étale).

The nice thing about these topologies is that they are enlarged when compared
to X zqr and Xg yet still have restrictions on the covers giving us some structure.
All of these topologies can be seen to be related by a series of continuous maps

* *
Xaar = X,

*
smoot é

h Xctalc - Xét - XZar~

In the next section, we will begin studying families of curves and see that they
form various topologies. The case with the richest theory is that of elliptic curves,
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being sophisticated objects, having genus 1, yet not too complex that it is unap-
proachable. Furthermore, over C, there are multiple approaches to elliptic curves
that one can hope to reconcile, giving us more to work with. We then define the
moduli topology to let us understand the “universal family of elliptic curves”. The
case of elliptic curves is one of the earliest instances of a need for stacky ideas, as the
universal family of elliptic curves that we would want doesn’t exist as a topological
space.

In section 3, we define what an invertible sheaf on this “universal family of
elliptic curves” is and see that there is a cohomological interpretation of the group
of invertible sheaves. Finally, in section 4 we will compute what this group actually
is.

2. MobpuLl TOPOLOGIES

In this section we will define the topology on the set of families of elliptic curves.
Most of our results will be focused on elliptic curves in particular, but for a more
general treatment of genus g, see [Mum65|. Having a topology helps provide some
geometric intuition to the set of families of elliptic curves. This is needed because
unlike simpler cases of families of lines or circles (which are parameterized “univer-
sally” by angle and radius respectively), there is no “universal” way to parameterize
families of elliptic curves.

Definition 2.1. A family of curves is a flat projective morphism 7 : X — S such
that all fibers over closed points in S are curves.
Call S the base.

Thus we can think of a family of curves as a set of curves Cs that vary with
structure determined by the morphism (such as a continuous morphism enforcing
continuity) as s varies in S. For example, if S = R™T, then one can think of it as
curves evolving in time. We care about families of curves because by enforcing a
parameterization, we are able to think about how curves change with a parameter.

Definition 2.2. A family of elliptic curves is a family of non-singular genus 1
curves 7 : X — & and a section s : § — X such that 7o s =id.

A section is then an identification of a base point on each elliptic curve. We
do this because a generic curve has infinitely many automorphisms, while an el-
liptic curve has finitely many automorphisms (since they must fix the basepoint).
These automorphisms matter because if we had a “universal” family of curves, the
automorphisms would appear over the same point in the “universal” family. But
we want étaleness, so fibres should be finite. This discussion will make more sense
later when fine moduli spaces are discussed.

Example 2.3. Let A; = Speck[j] and Sy = A; \ {0,123}. Then let Xy be the
closed subscheme of P? x S defined by the vanishing of

| (mz2 + 23) .

4
It is easy to see that the j-invariant is a morphism (given coordinates, just isolate
for j), hence we have mg : X9 — Sp. A computation shows that the j-invariant of
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is jo. Thus, we have a section € : § — X by picking the point at infinity via
S —(0,1,0) x S C X.

We are in a categorical setting, so we also want to define morphisms of families:
Definition 2.4. A morphism of a family of curves is a diagram

%1%%2

e
S — S

making this a fibre product diagram.

Definition 2.5. An (smooth/étale) morphism of families is a morphism of
families such that the morphism between the bases is (smooth/étale).

A morphism of families of elliptic curves is then just a morphism of families that
preserves the basepoint, i.e. the following diagram holds for a morphism F' between
families of elliptic curves X — S, Q) — 7T with sections s, t respectively,

X —9

1
S— T

It turns out there is an equivalent, more “homotopic” definition of a smooth
morphisms making them like fibre spaces:

Proposition 2.6. A map X — Y is smooth if for all local finite dimensional
k-algebras A with an ideal I that squares to zero and maps such that

SpecA/T —— X

T

SpecA — Y
induces the dotted map.
Proof. See [Stacks, Tag 02HT] O

This definition will be helpful because this definition focuses on test diagrams
and morphisms, allowing us to define smoothness when the object X is formal.

Of course, to have a topology, we need fibre products. So we need to show that
a fibre product of families of curves exist.

Theorem 2.7. Let m : X1 — 81 and w3 : X9 — S be two families of curves with
a map into Ty : Xo = So. Then m X, T2 exists as a family of curves.

The proof of this will reply on the set of isomorphisms between two (particular)
schemes having a scheme structure!

Proof. Let X = X; xg, S2 and Y = X3 Xg, §1 be S := &1 Xg, Sz schemes. In
this way, X and Y are two “naive” constructions of the fibre product, which fails
because X might not be isomorphic to Y. So we try to consider pulling X,Y back
along some T"— S such that there is an isomorphism.

By [FGI14, Theorem 5.23], the functor Morg(X,Y) sending an S-scheme T to
the set of morphisms X, — Y over T is representable by a scheme Morg(X,Y).


https://stacks.math.columbia.edu/tag/02HT
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Then composition of morphisms provides a natural transformation Morg(X,Y) x
Morg (Y, X) — Mor(X, X). Since Morg is representable, this gives us a composi-
tion scheme morphism Morg(X,Y) x Morg(Y, X) — Mor(X, X).

Finally, by taking the fiber over the identity morphism, we get that I := Isomg(X,Y)
exists as a scheme with the universal property of characterizing an S-scheme T and
an isomorphism Xp — Yp. I claim that X; — [ is the product family. First off
this is well-defined since over I, X7 = Y;. Now suppose we have 73 : X3 — S3 such
that the following commutes:

f
Ty — T

b

Ty — To

Then obviously we have a map S5 — S1 x5, S2 and we have isomorphisms (over
Ss3) due to morphisms of families requiring them to be fibred products:

X3 X><5'53 YXS$3
\T/

(X1 X, S2) X8yx8, S3 2 X1 Xsyxs; S3 2 X1 X5, XS5 since all the maps are Sy
morphisms) Therefore we have a canonical map S3 — I. Hence, this canonically
gives a morphism of families 3 — (X/I). O

Definition 2.8. Let the base scheme I in the proof above be denoted Isom(7y,ms).
The product of two families 7; : X; — S; will be denoted 7 : (X,,%X,) — Isom(7y, m2).

Observation 2.9. We can redo this proof without the products being fibred and
without 7y to see that absolute products also exist!

Obviously, we can use Theorem 2.7 to create products of elliptic curves, by
creating the section as follows: Isom(my,72) maps into Sy, So and agrees on Ss,
so by universal property, we have a unique map Isom(my,m2) — S1 Xs, S2. Then
compose this map with s x t for s, ¢ sections.

The following proposition will allow us to more concretely think about Isom(7y, 72).

Proposition 2.10. Given two families m : X1 — Sy, 72 : X9 — So. A closed point
of Isom(my,m2) lying over a closed point s1 € Sy is the data of

(a) a closed point sy € Sy such that there is an isomorphism between 7, *(s1)
and 5 (s2)
(b) a choice of isomorphism

Proof. Obviously giving the two pieces of data determines a point of Isom(71, 73), as
pulling back along (s, s5) is the scheme theoretic fibre, so we need an isomorphism
of these two fibres, which we have. It is closed because we have by hypothesis that
the pullback along an étale map is a curve.
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For the opposite direction, suppose we have a closed point p € Isom(m, ). We
have the following diagram:

X1 XS X%, D S1 X X2 X5, xS, P

\/

X1 xS S1 x X

\ /

81><82

p

Notice that p is isomorphic to its image in (s1, $2) € S1 X Sa because p — S1 X Sy
is étale and it is lying over a closed point (this information implies that the residue
field of p is an extension of the residue field of its image, but the residue field of its
image is k, which is algebraically closed). Thus the pullback is the scheme theoretic
fibre over p. Hence the first scheme in the isomorphism is 77 *(s1) x {s2} = 7 ! (s1)
and the second is {51} x 75 *(s2) 2 75 *(s2). Thus we have such data. O

It is easy to see that the other properties required of a topology are satisfied.
Hence, mirroring the definition of X mo0th/etale), We have

Definition 2.11 (Provisional Definition). Let Ml smooth /stale) D€ the topology
with open sets being families of elliptic curves and morphisms of open sets being

morphisms of families of elliptic curves. Then {U, ELN U} is a covering if each F,
is (smooth/étale) and U = UF,(U,).

Of interest is M}, . since cohomology works better with étale maps. We want
there to be a final object in this category, as this will allow us to define cohomology

as discussed after Definition 1.4.

Observation 2.12. A final object in this category would be a fine moduli space of
families of elliptic curves. But to define what a final moduli space is, we first look
at what a coarse one is.

Definition 2.13. A coarse moduli space of families of elliptic curves is a space
such that every family of elliptic curves maps into it.

Example 2.14. The space U/ SLy(Z) of the upper half plane modded out by the
SLy(Z) action is a coarse moduli space for families of complex elliptic curves. See
[Hail4] for a proof.

Example 2.15. The j-invariant from Example 2.3 defines a coarse moduli space.

As can be seen from the above two examples, a coarse moduli space isn’t unique.
To resolve this, one can introduce the idea of a fine moduli space which demands
certain universality properties.

Definition 2.16. A fine moduli space of families of elliptic curves is a space
M — T such that every family of elliptic curves 7 : X — S has a unique map
S — T making X the pullback of M and every map into 7" has a pullback that is a
family of elliptic curves.
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But, a fine moduli space often doesn’t exist, as is the case with families of elliptic
curves. The reason for this is because some elliptic curves have more automorphisms
than others. This idea will motivate a stack.

We care about moduli spaces because they allow us to understand all curves
geometrically. For instance, we can prove properties of curves generically, consider
singular curves as limit points, and understand geometrically how elliptic curves
vary as the parameter varies.

If a fine moduli space existed, then the size of each fiber over a point should be
the same. Namely, the same of a fiber equals the size of the automorphism group.
But this is not constant for all elliptic curves, contradicting the fact that it should
be constant as the morphism on the base is étale (this will discussed again later in
the form of Proposition 2.19).

Hence we begin the next definition of the moduli topology. It is clear that
absolute products are fibred products over the final object (when it exists). So
because absolute products are in the topology szsm ooth /étale)s W Can formally add
a final object M to the topology and not immediately lose its topology-ness.

But now we need to define a cover of the final object. Here the only requirement
we need to define is property (c) of a cover: if {U; — U} is a cover of U, then
{U; xV — V}isacover of V. Letting U = M tells us that 7 : ¥ — S being part of
a covering implies that for all over open sets 7 : ¥’ — &', 7 x ' — ' must be part
of an étale cover. Unravelling definitions, this says that we need Isom(m,7’) — S’
to be étale. So we have that

Definition 2.17. A family of curves 7 : X — S is (smooth/étale) over M if
for all 7’ : X' — &', the map Isom(w, 7') — S’ is (smooth/étale).

So the final form definition of the moduli topology will include this final object
and its covers as just defined.

Now we try to better understand what it means for a family of curves to be
smooth/étale over M. By unraveling the definition of a smooth morphisms of
families using Proposition 2.6, we get that

Proposition 2.18. Let A be a finite-dimensional local k-algebras and I be an ideal
I with diagram

y

~. 1 7

Spec A/T

hh— =

where Y — Spec A and Yy — Spec A/I are two families of curves and the solid
squares are morphisms of curves (i.e. fibre products). Then the family X — S s
smooth iff for all such A and I with a diagram above, we induce the dotted morphism
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of families
Yy > X
S l A BY /:£
pec o >
~. | 7
Spec A/T

Now suppose 7 : X — S is étale over M. Then for all curves p : C — Speck,
Isom(7, p) must be étale over Spec k. But this implies that Isom(m,p) is a finite set
of reduced points. As each point in Isom(r, p) represents an isomorphism of C' to
7~ 1(s) (pulling back along = € Isom(7,p) pulls back the isomorphism). Therefore

Proposition 2.19. If 7 : X — § is étale over M, then every curve C' occurs a
finite number of times in X. Furthermore, if C occurs in X at all, it must have a
finite automorphism group.

Proposition 2.20. A family of curves 7 is smooth over M and has property Propo-
sition 2.19 iff m is étale over M.

Proof. Let 7' : X' — S’ be another family of curves. By hypothesis, Isom(mr, ') —
&’ is smooth. Then by [Stacks, Tag 02GU] and flatness of smooth maps, it suffices
to show that the fibre over closed points has a finite number of closed points. But
the set of closed points corresponds to how many times a fixed curve occurs in X/,
so by hypothesis this is finite.

The converse was shown in the discussion above. (]

We naturally want to only consider families of curves étale over M in our topol-
ogy, as our morphisms and coverings also have to be étale. Hence we define

Definition 2.21. A modular family of curves is a family of curves étale over
M.

These families have nice properties:

Proposition 2.22. Given two modular families of curves w; : X; — S; with a curve
C occuring in m; over the point s;, the following holds:

Proof. Fix an isomorphism 7 : 77 *(s1) — 75 *(s2). Then 7 determines a point
t € Isom(my, m2) lying over s, 2. Since 7y, mo are moduli, Isom(7y, 7s) is étale over
both &1,82. Thus we have isomorphisms

0g,

1%
1%

0¢ Os,-

O
Proposition 2.23. Given a morphism F : (7' : ) = T) — (n : X — S) between

two modular families of curves, F is étale for free (a priori a morphism of families
has no extra properties).

Proof. Since F' is a morphism of families, ) is isomorphic to 7' x g X. Let the map
on the bases be f. Therefore we have a map o : T' — Isom(7n’,7) (note that this


https://stacks.math.columbia.edu/tag/02GU
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is the base of the fibred product 7’ x, 7). Thus we have the following diagram by
the universal property of Isom.

//\

By construction, this diagram commutes and p;jo = idp. Since p; is étale and
the identity is étale, by properties of étale maps, o is étale. Therefore f is too,
completing the proof. O

So our final definition of the moduli topology of families of elliptic curves is:

Definition 2.24. Let the topology 9t be defined by

(a) Open sets: families of elliptic curves and a final object M
(b) Morphisms: morphisms of families of elliptic curves (étale by Proposi-
tion 2.23) and projections onto M
(c) Covers: given {U, ~% U}
o if U# M, it is a cover if U = Ur,(Uy)
o if U = M, it is a cover if every elliptic curve occurs in one of the
families 7,

Remark 2.25. There is an alternative characterization of 91 using the j-invariant
and double covers, see [Mum65, p. 62] for the details.

There are a few standard sheaves associated to the topology 9:

Definition 2.26. Let o be the sheaf on 9 sending 7 : X — S to I'(S, 05). This
can be easily verified to be a sheaf on 9T without the final object. Then to define
o(M), we use the defining property of a sheaf: take a covering {m, : X0 — Sau}-
Let mo,5 1 X0, = Sa,p be the product of 7., 3. Then let

M) = ker(H o(ma) — H 0(Ta,p))

where the map is the usual map (via restrictions to the image) I'(Sq, 7o, 05, 7 ) —
[IT(Sa,8:08,,70.5)-

Let 0* (7) = units of o(r).

Let K () be the fraction field of o(m).

Remark 2.27. Our approach is different to texts like [Hail4| (who does prove
Theorem 4.1) in that we, following Mumford, construct the “universal family of el-
liptic curves” formally while Hain takes a more analytic approach through orbifolds.
Despite these differences, underlying both texts are stacky ideas.

3. THE PicARD GROUP

Vector bundles are of great interest in math because they allow us to linearly
approximate spaces, classify spaces, provide structure on spaces, and have relevance
in ODEs. Vector bundles in general are quite tricky, so we can try classifying one
dimensional ones. Vector bundles are analogous to sheaves, and one dimensional
ones are analogous to invertible sheaves. By localizing at every point, we can even
think of an invertible sheaf as a set of function from the space to a ring. Hence we
define what an invertible sheaf on 9t:
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Definition 3.1. An invertible sheaf on 9t consists of the following:
(a) for every 7 : X — S, an invertible sheaf L(w) on S
(b) for all morphisms F' between families:

X1*>XQ

-l
81 % 82
we have an isomorphism L(F) : L(m) & f*(L(72)).
(¢) The isomorphisms have a compatibility condition: given two morphisms of
families F, G,

x1*>XQ*>%3

of o[

81ﬁ827>83

We have that the following diagram commutes:
m2)

A fm*
L@M /

L(’]Tg

L(n (9" L(ms3))

Remark 3.2. This information is sufficient to determine the value of the sheaf on
the final object too, by letting L(M) be the equalizer of

Il twa)= [ LWa xUp).

Us €M Ua,UgeM

Example 3.3. We have an invertible sheaf A on 9 defined on family 7 : X — S
by A(r) := R'm.ox (where the R indicates the first right derived functor so that
this is a sheaf on §). We can then show that A(m) is a locally free sheaf of rank
1 by verifying this on the stalks (Exercise 5.7 of Chapter II Hartshorne). On the
stalks, A(m) is the right derived functor of global sections of the structure sheaf of
an elliptic curve 7= !(s), which is free of rank 1. Le., this is really just H'(C,0¢).
Furthermore, for all

X1*>XQ

L]

81 —_— 52
we have a canonical isomorphism A(m1) — f*(A(m2)).

Definition 3.4. The Picard group Pic(9) is the group of isomorphism classes
of invertible sheaves with the operation being via tensoring.

There is a conceptually cleaner way to define the Picard group using cohomology:

Theorem 3.5. Pic(9M) = H(9M,0%)
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But we will need the following theorem that allows us to think about invert-
ible sheafs on a cover as a Zariski sheaf, thereby “descending” the topology to a
topologically open set.

Theorem 3.6 (Hilbert-Grothendieck Theorem 90). Let {U, * X} be a flat
covering of X. First suppose that for all o, we are given L., an invertible sheaf
on Uy. Finally, suppose that for all o, B, we have an isomorphism ¢q 5 of piLqa
and p5sLg on U, xx Ug (with compatibility on triple products). Then we have an
invertible sheaf L on X and isomorphisms v : Lo — ¢ L such that on U, xx Ug,

Pi(La) W p3(Lg)

piwall p;w,{z

pi(aa(L)) —= p5(q3(L))

commutes (here the ~ indicates an isomorphism).
Furthermore, L, are uniquely determined up to canonical isomorphism.

Remark 3.7. This is related to the elementary statement of Hilbert Theorem 90
by being stronger than it. For a proof of this, see Theorem B.1

With this theorem, we will now prove the equivalence between the definitions.
The following proof will be similar to the proof in the remark above, but more
abstract.

Proof. First we construct a map Pic(9) — H'(9M,0*). Let L be an invertible
sheaf on 9. Then take an open cover {m, : X, — S, } of M.

Now take some 7,. Because L is an invertible sheaf, we can replace the cover
by one in which L is trivialized on the base (i.e. a particular Zariski open cover).
Thus we can pick ¢, such that it is an isomorphism

L(WQ) %) 0s,,-

o

Now let 7o 8 : Xa0,3 = Sa,p and p1, p2 be the projections of I, g = Isom(mq,73)
onto S,, Ss respectively. Hence we have isomorphisms

P1L(ma) = L(ma,p) = py L(ms).
Thus we have the following:

0(Ia,8) = Po(Sa)

= piL(ma) (via ¢a)
= L(ma,p)

= p3L(mg)

= p30(Sp) (via ¢5")
=0(lap)

(recall Definition 2.26) This isomorphism happens through multiplication by a unit
0.8, hence we get an element of I'(Z,, g, o?aﬁ) = 0" (7q,3). This then forms a 1-Cech
cocycle in the sheaf 0> for this cover, call it A;. We can verify that its derivative is
zero by using the compatibility condition on morphisms in Definition 3.1.
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Next, we need to verify that this is well-defined, i.e. that [\;] € H' (9, 0%) is
not dependent on the choice of {¢,}. So suppose we have ¢/ , another choice of
isomorphisms. Then ¢, = 04¢q for 0, € T(Sa, 05 ). Doing so gives us

0;,5 = pT(Ua)p;(Uﬁ)ilgaﬁ’

a homologous cocycle.

Thus A; induces an element Ay of the Cech cohomology group. Now to show
that Ay is independent of the cover we pick, given two covers, they are dominated
by a cover finer than both. Thus we can assume the new cover is finer than {m,}.
Hence the new \; is a restriction of the old A1, showing that A\ doesn’t depend on
the cover.

To see surjectivity, suppose we have an element A € H* (90, 0%). This is induced
by A1 = {04} for some 1-Cech cocycle with cover of the final object {7y : X0 —
S.}. Now take 7 : ¥ — S and let I, = Isom(w, 7, ). We want to use this cover and
the data of A1 to construct an invertible sheaf on S.

First notice that {I, — S} is an étale cover of S. Then because we have
projection maps I, Xg Ig = I, = S, and Iz — S, we have a map

I, xs Iz — Isom(my, 7).

Thus we induce a 1-Cech cocycle for the covering {I, — S}, {7a,5} We want to
use this information to construct a sheaf on S. This is exactly what Theorem 3.6
allows us to do.

Namely, we use the theorem with U, = I,, X = S, Lo = o7, and ¢op3 =
Tap- (recall that ¢ needs to be merely an isomorphism of sheaves, not rings). So
we get a sheaf L on S, which we define to be L(w). To construct L(F), just
recall that morphisms of sheaves can be done locally and must satisfy exactly the
compatibility condition. Finally, we must verify that L maps to A\o. This is obvious
by construction of the ¢, g and picking {7s o X s g} to be the cover of M.

The last step necessary for this theorem is to prove injectivity: suppose Ay = 0.
Then A; = 0 for a cover {n,}. Le., 04,3 = 1. We want to construct an isomorphism
P(m) + L(w) & og for every family 7w : X — S that is compatible in the obvious
ways. Like before, we consider the cover

{I, = Isom(m, ) = S}.

Since L is an invertible sheaf, we have isomorphisms L(m,) — 0g,. Thus pulling
back L to I, gives us an isomorphism L(7mx7m,) = o;_. By definition of an invertible
sheaf, we then have an isomorphism

Yo 1 o L(T) Zog,.

Since 04,5 = 1, the following diagram commutes:

* * I ’ll)a) *
pr(@sL(m) 252 pror)

P(5Lm) =4 p3(or,)

Thus we have descent data for U, = I, X = S,L, = 07, and ¢,,3 = 1. So by
uniqueness, we have a canonical isomorphism of L and os. The verification of the
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compatibility goes as follows: We need ¢ (7) to have the property that for every

X1*>%2

L

81%82

a morphism F': m; — mo, the following diagram commutes:

L(m) 22 pL(m)

Jqp(m) y(ﬂz)

05, ——— fros,

This is true because we can use the canonicity of the isomorphism from descent
data to reduce the commutativity to being on a cover. Then these isomorphisms
commute on a cover by definition of a morphism of sheaves. ([l

4. CALCULATION OF PICARD GROUP

Assume chark # 2,3. In this section we will compute the Picard group of 9t
and see that it is:

Theorem 4.1. Pic(IM) = Z/12Z

This is quite surprising, as 12 wouldn’t be expected to appear in elliptic curves a
priori. Furthermore, in the case of k& = C, this is basically saying that the first co-
homology of the universal family of tori (genus 1 curves) has torsion! This contrasts
with the moduli space of spheres at the origin being R ™, which is contractible and
thus having zero cohomology.

First we will want to construct a map Pic(9) — Z/12Z. To attach an invariant
to L € Pic(9M), we can try studying automorphisms of it. We know that every
elliptic curve has an order two automorphism in the form of i : (z,y) — (z,—y)
when in Weierstrass form (i.e. P+ —P). This automorphism then glues together
to an automorphism of every family of elliptic curve:

x—tsx

-
S =S

This automorphism then induces an order two automorphism of L(w). Any such
automorphism has to be multiplication by +1 in o3. This is a continuous function,
so it defines a function to {1} on the set of connected components of S. Clearly
we then have a homomorphism Pic(9) — Z/2Z. Similarly, by using the existence
of elliptic curves with automorphism groups of order 4 and 6 (corresponding to
j =0 and j = 1728 respectively) [Sil08, Theorem 10.1] , we get maps
Pic(M) — Z/4Z and Pic(I) — Z/6Z.

Let C'4 and Cp be curves with automorphism groups of order 4 and 6 respectively
and let w4 : C4q — Speck and wp : Cp — Speck be the trivial families. Fur-
thermore, pick generators g, h of Aut(C4), Aut(Cp) respectively. By noting that

g% = h® =4, we can combine them into a map

B: Pic(9M) — Z/12Z.
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Before we get into the proof of injectivity and surjectivity, we need to build up
a lttle more theory of elliptic curves.

Example 4.2. There is an example of a modular family of curves that we have seen,
namely Xo — Sy from Example 2.3. To see this, we need to show Proposition 2.18
and Proposition 2.19. The latter is trivial to see. And the former can be shown
with a rigorous analysis of infinitesimal deformations of an elliptic curve.

Observation 4.3. We can see that the j-line, i.e. A; is not the base of a fine
moduli space. By definition, a fine moduli space 7 : X — S in 91 will have every
family mapping to it (since morphisms of families are pullback diagrams). Thus we
have a map my — w. But by uniqueness of a map to a fine moduli space, 719 — 7
must be the j-invariant map. Hence the question is whether we can extend Xj to
a family over A;.

So suppose we can extend it. Then by definition of 73, being modular, Isom(7, )
must be étale over S. By Proposition 2.10, a closed point of Isom(7, 7) lying over
a closed point t € S is the data of

(a) closed points ¢’ such that there is an isomorphism 7=1(¢) and 7=1(¢')
(b) a choice of an isomorphism

But because we are in the j-line, there are no other closed points ¢’ with an iso-
morphism to 7~ 1(¢). Thus the size of the fibres are the size of the isomorphism
group. But elliptic curves with j-invariant 0 or 1728 don’t have automorphism
groups Z/27Z like every other elliptic curve. Hence this map can’t be étale, showing
that an extension to a modular family doesn’t exist.

Our second observation is that for any family of elliptic curves 7 : X — S, we
have a morphism j : S — A; by sending a point s € S to j(7~!(s)). This gives us
a commutative diagram:

Isom(7r, ) N

[ |
59 A
The diagram commutes because closed points of Isom(w, 7y) are isomorphisms of

the elliptic curves lying over their images, hence they have the same j-invariant and
thus lie over the same point in A ;.

Observation 4.4. By Observation 4.3, So — A is an étale double cover, hence
Isom(7, ) is an étale double cover of j71(Sp) C S. This extends uniquely to a
double cover I of all of S which is not necessarily étale!®. This double cover and
map into A; will allow us to formulate an equivalent definition of M. See [Mum65,
p. 60] for the details.

Proof of Theorem 4.1. We have two parts: surjectivity and injectivity.

For surjectivity, I will show that S(A) (where A is the invertible sheaf of Ex-
ample 3.3) spans Z/12Z. To do so, we need to show that A(c) and A(7) are
the multiplication by a primitive root of unity maps. I.e., we need to show that

3a double cover here means a non-singular curve 7" and a finite flat surjective morphism 7" — S
of degree two étale over an open dense subset of S. Either I is the disjoint union of two copies of
S or Isom(, mo) is the normalization of j71(Sp) in a quadratic extension of its function field so
that I is the normalization of S in this field.
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Aut(Cy),Aut(Cp) acts faithfully on A(mwa), A(wp) respectively. We do so con-
cretely: by definition,

A(ﬂ'A) = Hl(CA,OcA) and A(T('B) = Hl(CB,OCB).

a) By Serre duality, H'(C, o) is isomorphic to the space of regular differentials
(a) By y, H(C,00) p p g
on C
(b) In Weierstrass form, the differential %‘T is regular and forms a basis of the
space of differentials on C'
c i) Cq:9y?2 =z(x+1)(z —1) with g taking = to —z and y to iy. Then
() () y g g y to iy
d?m — ’i—z”” so the action of Aut(C4) is faithful.
(ii) Cp:y? = 2® —1 with h taking = to wx and y to —y. Then %’” — %
so the action of Aut(Cp) is faithful.

Thus we are done with surjectivity.

To see injectivity, suppose (L) = 0 (mod 12). Let 7 : ¥ — S be a family of
curves such that every curve occurs in it. Then j : S — A; is a covering map.
We shall descend our invertible sheaf on 9t to an invertible sheaf Ly on A; via
Theorem 3.6. As there is a unique invertible sheaf on A;, we can then use this
isomorphism to get an isomorphism L =2 o.

For this latter step, we can see this by taking an open cover on which Lg is
free U;. By taking a distinguished affine subcover, we can suppose that U; =
Spec k[j][u; '] and Lo|y, = Opjju-1) (in @ way compatible on intersections). So we
have compatible isomorphisms on an open cover of A;. We can then glue them
together to get an isomorphism Lo = 0y[;), showing uniqueness of invertible sheaf
on Aj.

Label maps as follows:

Isom(m, )

|#

Normalization of S x A, S

g

SXAJS

nl

S

and let ¢; = p; o g o f (which by observation are also the projection maps). In
order to apply Theorem 3.6 to conclude that L descends to A;, we need to show
that the isomorphism ¢ : ¢f L(w) — ¢5 L(7) by virtue of L being an invertible sheaf
is actually induced from an isomorphism g : p;L(7) — p5L(w) via f*g*. This is
because this will show that a sheaf on 9t uniquely determines a sheaf on A ;. Recall
that by Observation 4.4, Isom(r, 7) — Normalization of S x; S is a étale double
cover.

Now take a closed point {f} of S xa, S and let ¢, 5 be two points of Isom (7, 7
lying over S xa; S. Let L; be p:L restricted to £ and s; = p;(f). Then L;
L(m=(s;) — s;).

By Proposition 2.10, ¢, ts represent isomorphisms 7,7’ of 7=1(s1) and 77 1(s2).
By hypothesis, (L) = 0, so every automorphism of an elliptic curve induces a

~—

IR
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trivial automorphism of L. Thus L(7' o 77!) = id. Hence L(7') = L(7). Hence
1 induces a unique isomorphism vy of piL(w) and p5L(w) at t. Showing that this
topological map is given by functions in the local rings of S x A ; S is pretty technical
and will be skipped.

Then the 1)y forms descent data for {S — A;} with the compatibility condition
following from the compatibility conditions on being an invertible sheaf. Thus we
have unique descent data, thereby showing that L determines and is determined by
an invertible sheaf on A ;. As there is only one invertible sheaf on A j, the structure
sheaf, we are done. O

One way to think about this result is that Pic(9) consists of global line bundles
on all elliptic curves. Then these line bundles are heavily controlled by the line
bundles point wise on 9 (i.e. line bundles on curves) as they must factor in the
automorphisms of the curves.

APPENDIX A. TENSORS

Proposition A.1. Let L/K be a finite Galois extension of fields with Galois group
G. Then
Lok L= ] L
ceG
Proof. By the primitive element theorem, write L 2 K (6) with the minimal poly-
nomial of 6 being P € K[X]. Then
Lo L= Lok (K[X]/P)~ (Lo K[X])/P = L[X]/P.

Since L is Galois over K, P factors into [[_.~(X — 06). Thus by the Chinese

remainder theorem,

ceG

LIX]/P =[] LIX]/(X - 00).

APPENDIX B. HILBERT THEOREM 90

Theorem B.1. Theorem 3.6 implies that for a Galois extension L/K with cyclic
Galois group G, any element a with relative norm 1 is equal to

b

ob
for some b e L.

Proof. First note that the statement about norm 1 elements implies that for all
finite Galois extensions L/K,

HY(Gal(L/K),L*) = {1}.

Now fix L/ K a finite Galois extension and consider the cover {Spec L — Spec K }.
Take an L-vector space V on Spec L and let V be the sheaf on Spec L associated
to V. Fix e a basis vector of V. Then to define ¢, g, it suffices to define the map
on global sections (i.e. (L ®x L) ® V) and to define it on 1 ® x 1 ® e since we can
linearly extend (note that here, when we linearly scale e by ¢ € L, we have to scale
the image by L ® 1 by L ®x L linearity). Then given [\] € H*(Gal(L/K), L*), we
can construct descent data as follows:

Lemma B.2. Our first claim will be that descent data bijects to 1-cocycles.
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Proof. Observe that L@y L =[] .4
phism piV — p3V is the same as giving a unit £ € (H

L as rings (Proposition A.1).Thus an isomor-
X

oceG L) '

Now suppose we have descent data. Then we have a unit £ € (HaeG L) . By the

identification above, we then a function f : G — L* by looking at each coordinate.
It is a 1-cocycle because the cocycle condition for descent data implies that

pTV Pi3Pa.p pgv
p

Iz@k‘ P33Pa,8
*
1214

Note that here, the single digit projection p; denotes projection from Ly ® g Lo® i L3
(labelled for convenience) to L;, while p;; is projection from Ly @k Lo ®x L3 to
L; ®x L;. By Proposition A.1, scaling via p; : L - L @k L (¢ ® 1) multiplies the
image in [[_ L by ¢ in each coordinate, while scaling via p, (1 ® ¢) multiplies the
o-th coordinate by /.

Now applying Proposition A.1 again, we have that L ®x L ®x L =[], [[,, L
(the strange indexing inside is because we factor @), the minimal polynomial of
the primitive element of the second L into terms of X). Thus computing the
compositum path by converting everything via Proposition A.1, we first multiply by
((A(0))or)o and then multiply by ((6A(7))er)s. Computing the map piV — piV,
we get multiplication by ((A(07))sr)s, exactly as desired.

Reversing the above proof gives the opposite direction. ([

Lemma B.3. Our nezt claim is that isomorphisms of descent data correspond
exactly to cohomologous 1-cocycles.

Proof. An isomorphism of descent data is an isomorphism f : V' — V such that
the following commutes:

piv 22 psv
pif psf -

v, a,
PV =5 psv
We know that ¢, g is really multiplication by some unit v in [] L. An isomorphism
f is just multiplication by some ¢ € L*, so we have the following diagram:
* ¢‘1-ﬂ *
PV —— pV
| |
pi(-6) p3(-6) -
v Yas S
PV —— pV
In the above lemma we described what these two vertical maps were. Thus the com-

mutativity of this diagram is saying that in [ [ L (and denoting the o-th coordinate
of u by u,)

(tu)o = (0luy)o.

This is saying that «/(0) = u, and u(c) = u(o) are cohomologous.
To complete the proof, just reverse the direction. ([l
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Finally, Theorem 3.6 implies that up to isomorphism, there is only one descent
data, coming from the K vector space K. Thus there is only one cohomology class,
implying Hilbert Theorem 90. (]

[Art69]
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